A Concise Approach to Vinigrol

Thomas J. Maimone, Ana-Florina Voica, and Phil S. Baran*

Department of Chemistry, The Scripps Research Institute

Vinigrol
Isolation & Biological Activity

Isolation: Novel diterpenoid isolated in 1987 by Ando and coworkers at Fujisawa Pharmaceutical Co. from fungal strain *Virgaria nigra*, isolated from soil collected at the foot of Mt. Aso, Japan:

Virgaria nigra also found in US, Canada and Cuba

Biological activity: antihypertensive, inhibition of platelet aggregation (rabbit and human), induces contraction of aortic smooth muscle (rat) through Ca$^{2+}$ ion channel agonist activity, TNF antagonist for possible treatment of endotoxic shock, inflammation, muscle atrophy, progression of ARC to AIDS, autoimmune diseases, arthritis...
Structural features

Figure: Carbogenic ring systems in terpene synthesis.

Scheme: Different topological viewpoints of vinigrol

- Decahydro-1,5-butanonaphthalene carbon skeleton.
- Presence of eight contiguous stereocenters.
- Multiple sites of oxygenation.
Studies directed towards vinigrol
(by L. A. Paquette *et al.*

Introduction

Previous approach

Baran’s approach

Conclusion
Studies directed towards vinigrol (by L. A. Paquette et al.)

Introduction

Previous approach
Baran’s approach
Conclusion
Studies directed towards vinigrol (by L. A. Paquette *et al.*)

- Different approach for construction of octalin core:

 - 8 steps
 - 5 steps
 - 6 steps

 ![Chemical structures and reactions]

 Introduction

 ✓ Previous approach
 Baran’s approach
 Conclusion

 ![Chemical structures and reactions]

Quantum Mechanical Study

Major conformer lacking the proximity needed for ring closure

![Chemical structure with energy values](image)

- 15.497 kcal/mol
- $\Delta E_{\text{strain}} = 28.172 \text{ kcal/mol}$
- -92.083 kcal/mol
- $\Delta H_f = -79.408 \text{ kcal/mol}$
- 25.58 kcal/mol
- $\Delta E_{\text{total}} = 38.25 \text{ kcal/mol}$
Studies directed towards vinigrol (E. J. Corey IMDA Approach)

Previous approach

Baran’s approach

Introduction

Baran’s approach

Conclusion

S. N. Goodman, Ph. D. Dissertation Harvard University, 2000
Synthesis of the Complete Carbocyclic Skeleton of Vinigrol

Introduction

Previous approach
Baran’s approach
Conclusion

Org. Lett. 2003, 5, 1139 - 1142
Important Features of Vinigrol

- Major conformer (4a) lacking the proximity needed for ring closure.
- C4 & C11 Carbons are unusually close.
Retrosynthetic analysis

Introduction

Previous approach

✓ Baran’s approach

Conclusion
Synthesis of the vinigrol core (5). a) (E)-methyl 4-methyl-2-pentenoate (1.0 equiv), diene 8 (2.0 equiv), AlCl$_3$ (1.5 equiv), DCM, -78 °C, 1 h, 45 °C, 3 h, 65% (d.r.\approx2:1); b) LDA (1.2 equiv), Tf$_2$O (1.3 equiv), THF, 78 °C to -23 °C, 2 h, 87% (based on recovered starting material); c) vinyltributyl tin (1.2 equiv), LiCl (4.8 equiv), [Pd(PPh$_3$)$_4$] (0.1 equiv), THF, reflux, 3 h, 90%; d) DIBAL (2.5 equiv), DCM, -78 °C, 30 min, then DMP (1.25 equiv), DCM, 23 °C, 30 min, 80% over two steps; e) allylmagnesium chloride (1.0 equiv), PhMe, -78 °C to 105 °C, 90 min, then TBAF (4.8 equiv), 65 °C, 45 min, 75%;
Synthesis of the vinigrol core 5

f) DMP (1.1 equiv), DCM, 23 °C, 30 min, 92%; g) DIBAL (3.2 equiv), DCM, –78 °C, 30 min, then MsCl (1.25 equiv), Et₃N (1.5 equiv), 23 °C, 20 min, 79% over two steps (d.r.≈2.5:1); h) KHMDS (1.1 equiv), THF, 0 °C, 15 min, 93%; i) m-CPBA (1.5 equiv), NaHCO₃ (2.0 equiv), DCM, –15 °C, 45 min, 95%; j) DIBAL (3.2 equiv), DCM, –78 °C, 30 min, 96% (d.r.≈2.5:1); k) aqueous NH₄Cl, 23 °C, 81% (d.r.6:1).
Conclusion

- Tricyclic carbon skeleton 5 achieved in 9 steps 20% overall yield.

- Five out of eight stereocenters have been partially addressed in this sequence.

- Grob fragmentation followed by proximity induced intramolecular Diels-Alder reaction makes it possible to access this skeleton.

- Careful sequence choreography and redox accounting led to minimize the protecting group chemistry.