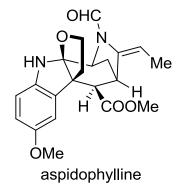
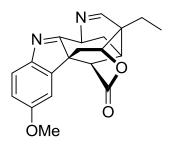
Nine-step enantioselective total synthesis of (-)-vincorine


Horning, B.D.; MacMillan, D.W.C J. Am. Chem. Soc. 2013, 135, 6442-6445.

The akuammiline family


- Family isolated from plants in Southeast Asia and Africa
- Characterized by rigid polycyclic ring system with :
- Caged structure
- Quaternary center
- Indol(en)ine motif
- Numerous stereocenters
- Medical relevance :

Anti-cancer properties

vincorine

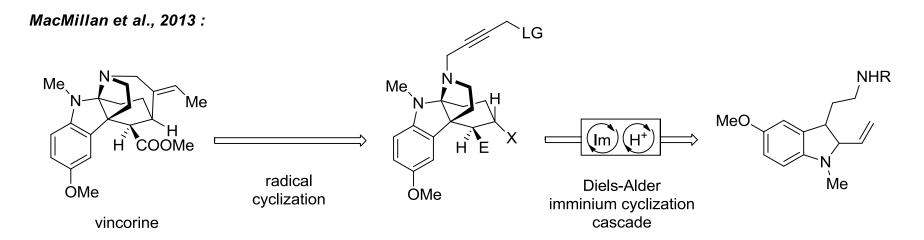
akuammiline

scholarisine

(-)-Vincorine

- Vincorine extracted from Vinca minor (periwinkle)
- Structural particularities :
- Pyrroloindoline motif
- I quaternary center
- 3 other stereocenters
- Synthetic challenges :
- Pentacyclic caged structure
- Strained 7-membered ring
- Enantioselective catalysis

Previous syntheses


Qian et al., 2009 - 31 steps, 1%:

Ma et al., 2012 - 18 steps, 5% :

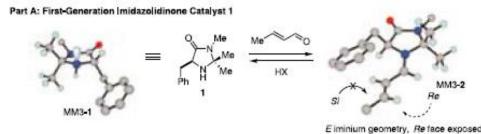
$$\begin{array}{c} \text{Me} \\ \text{N} \\ \text{N} \\ \text{Me} \\ \text{H} \\ \text{COOMe} \\ \text{OMe} \\ \text{$$

For both syntheses, C-N bond formation forged 7-membered ring

MacMillan's strategy

Would form the 7-membered ring and the methine with right stereochemistry in 1 step

Starting from cheap achiral compounds
High complexity-generating step


Imminium activation

Substrate Catalyst LUMO Activation
$$\bigcirc$$
O + Lewis acid (LA) \longrightarrow \bigcirc O + \bigcirc

Objectives of design:

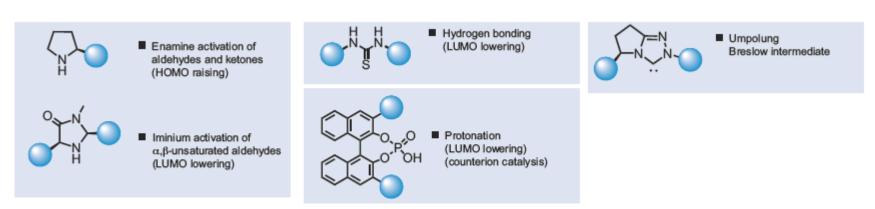
- The iminium formation should be efficient and reversible.
- High levels of iminium geometry control
- Selective discrimination of the face of attack

- Based on the capacity of chiral amines to lower LUMO
- Reversible formation of iminium is mimicking Lewis acid-catalysis
- Used for Diels-Alder, Friedel-Crafts, Mukayama-Michael, cascade reactions...

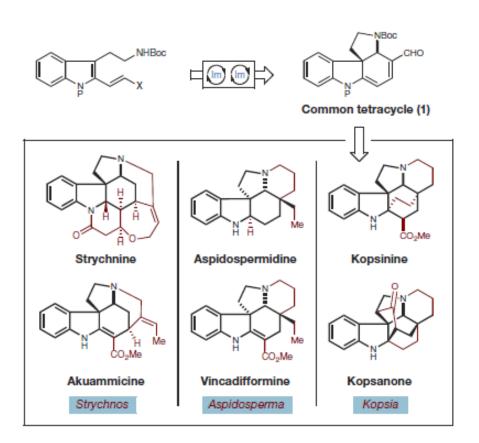
Part B: Second-Generation |midazo|idinone Catalyst 3

nitrogen lone pair more exposed, leading to faster iminium ion formation increased control of iminium ion geometry Reface more exposed, higher % ee

Ref. 8


Lelais, G.; MacMillan, D.W.C. Aldrichimica Acta, 2006, 39, 79-87.

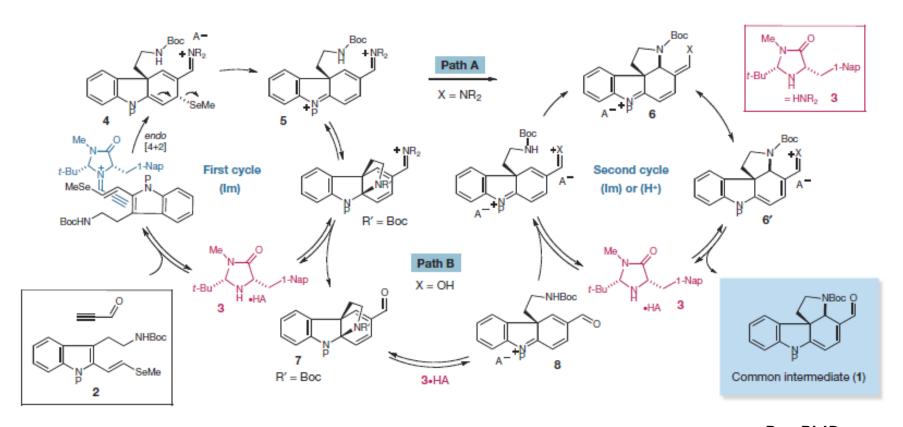
Organocatalytic cascades


Advantages of organocatalytic cascade reactions:

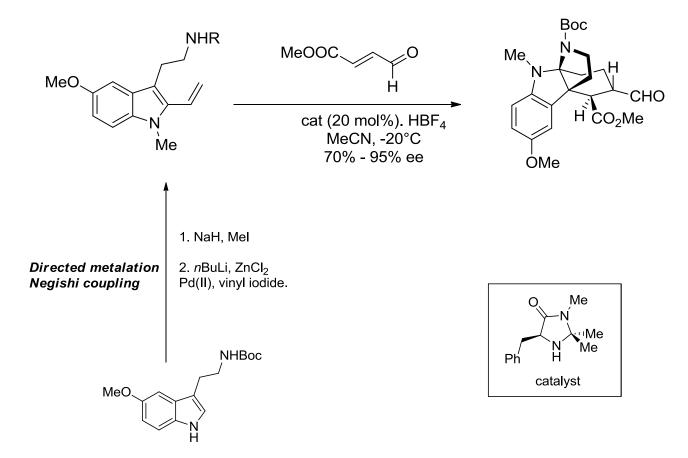
- Several reactions are carried out in 1 step
- Avoids protecting groups manipulation
- Rapid complexity generation
- Selectivities often good
- Good functional group tolerance
- Mild conditions

Organocalaysis allows different modes of activation combined on I catalyst

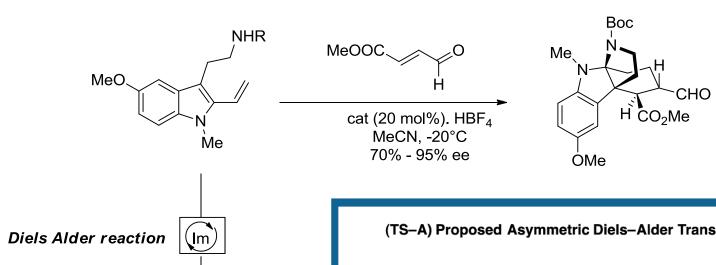
Mac Millan's collective synthesis of natural products by organocascade catalysis

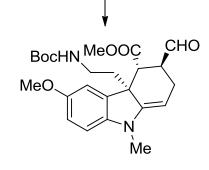

Collective synthesis:

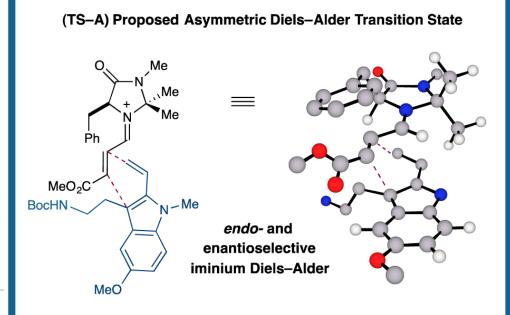
Preparation of a common intermediate to structurally diverse natural products from different families.

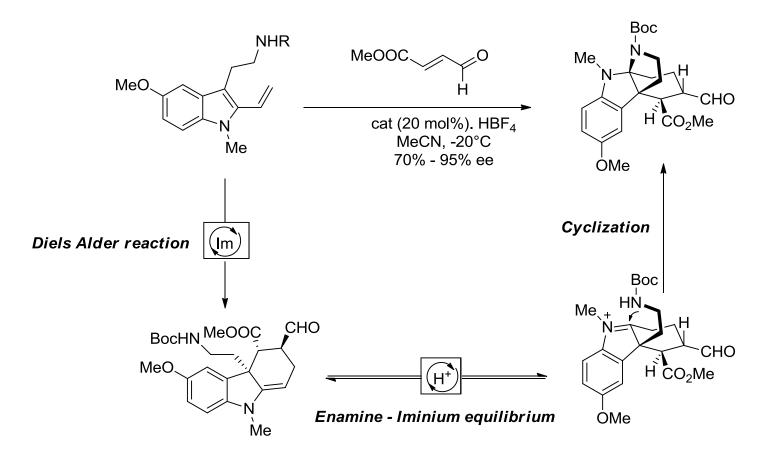

Use of organocascade catalysis: unprecedented levels of ease and efficiency.

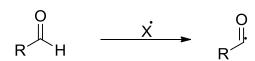
In total, 34 steps for the 6 compounds (76 steps in the previous syntheses)


Mac Millan's collective synthesis of natural products by organocascade catalysis

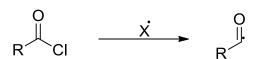



P = PMB 82% - 97% ee

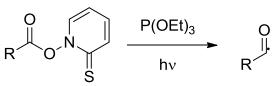




Generation of I quaternary center, 3 other centers, 2 cycles – 70% yield, 95% ee.


Acyl radicals precursors RCO-X

From aldehydes


Poor chain transfer step. Aldehyde needed in high concentrations. Often not very efficient

From acyl chlorides

Many side products.
Parasit non radical reactions

From acids

Via O-acyl thiohydroxamates

From acyl selenides

SeAr Bu₃Sn

Most convenient method. React readily but are quite stable.

From acyl tellurides

Analogous to selenides.

From acyl cobalt

Possible reaction of acyl radical with ligand. Moderate to good yields.

From diverse thioesters: various methods but often lack of reactivity

+ other less common methods

Chen, C.; Crich, D.; Papadatos, A. J. Am. Chem. Soc. 1992, 114, 8313-8314. Crich, D.; Chen, C.; Hwang, J-T.; Yuan, H.; Papadatos, A.; Walter, R. I. J. Am. Chem. Soc. 1994, 116, 8937-8951. Chatgilialoglu, C.; Drich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1999, 99, 1991-2070.

Formation of the 7-membered ring (complicated)

StBu Me TePh HE ÓМе

Barton ester 120°C: 18%

thiopyridyl byproduct by radical recombination

Acyl selenide Bu₆Sn₂ - 120°C - hv: 17%

decomposition under reaction conditions

Acyl telluride

120°C:8% 160°C: 31%

200°C:51%

Conclusion

Synthesis of (-)-vincorine in 9 steps and 9% yield.

Previous ones: Qian 31 steps, 1% overall yield Ma 18 steps, 5% overall yield

- Key steps :
- Organocatalytic Diels-Alder/amine cyclization cascade
- 7-exo-dig radical cyclization using an acyl telluride
- Synthesis of analogs ongoing