Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-based (5+2) Cycloaddition

M. Zhang, N. Liu, W. Tang University of Wisconsin

J. Am. Chem. Soc. **2013**, 135, 12434-12438

Introduction

- Cephalotaxus norditerpenes (C19)
- Tetracyclic carbon framework
- Ring A: 5-6 contiguous stereogenic centers
- Tropone ring D
- 1 and 4 with additional THF ring

Introduction

- Harringtonolide first isolated in 1978
- from C. harringtonia
- Structure confirmed by X-ray.
- In 1979, harringtonolide and hainanolidol isolated from *C. haiananensis*.

Antiviral activity Antineoplasmic activity (nM range)

Inactive

Same plant Different biosynthesis

THF ring seems to be important for activity: interest in determining mode of action!

Biosynthesis

- No study has been conducted!
- Proposition

Scheme 30 Biosynthetic proposal for Cephalotaxus norditerpenes.

First Semi-synthesis

hainanolidol is the biosynthetic precursor of *harringtonolide*

Strategy based on IMDA approach alcohol esterification with the dienophile oH OH CHO CHO toward the diene asymmetric 1,3-dioxane tether for templating IMDA reaction

SM = glucose!

Retrosynthesis of D-ring

H. Abdelkafi et al., *Eur. J. Org. Chem.* **2011**, 2789-2800

Scheme 3. The 1,3-dioxane IMDA reaction applied to (E,Z)-dienyl fumarate 34, as a key step in the synthesis of harringtonolide 1. *Reagents and conditions:* (a) BHT (0.2 equiv.), toluene, 220 °C (sealed tube), 110 h; (b) L-Selectride, THF, -78 °C; (c) TFA/H₂O (1:1), 80 °C.

H. Abdelkafi, P. Herson, and B. Nay, Org. Lett. 2012, 14, 1270-1273

H. Abdelkafi, P. Herson, and B. Nay, Org. Lett. 2012, 14, 1270-1273

Conditions: Yb(OTf)₃ (1eq.), THF, 80 °C, yield: 57%

H. Abdelkafi, P. Herson, and B. Nay, Org. Lett. 2012, 14, 1270-1273

Zhang Retrosynthesis

additional contiguous stereogenic centers

5+2 cycloaddition

5+2 addition via group elimination

Oxidation of furan: Achmatowicz reaction

5+2 cycloaddition

5+2 cycloaddition

Biosynthetically inspired total synthesis of intricarene for bipinnatin J

Synthesis

Preparation of starting material

Addition of different chiral ligand failed to give good yield and ee!

Synthesis

Cis-diol obtained because protection as acetonide possible Need the *trans*-diol!

Synthesis: Weinreb amide 18

Synthesis

Via:

G. V. Kabalka, D. T. C. Yang and J. D. Baker, J. Org. Chem. 1976, 41, 574-576

Synthesis

Completion of the synthesis

Opening of the ether bridge proved impossible!

Alternative strategy

2 Step sequence: S_N 1' Substitution with thiophenol and deprotonation

^{*a*}(a) PhSH, BF₃·OEt₂; (b) LDA, HMPA, THF; (c) MeMgBr; (P = TBS).

Model: Tropone formation

Hetero Diels-Alder reaction with nitrosoarene

^{*a*}(a) TBSOTf, 2,6-lutidine, DCM; (b) 2-nitrosopyridine, DCM, 90% over two steps; (c) SnCl₂, EtOAc, 50%.

This strategy proved not successful on the elaborated intermediate!

Hydrolysis of thio ether not possible as well!

Removal of thio ether

- 1) Protection of alcohol
- 2) Oxidation of thiol to sulfoxide
- 3) Reduction using SmI_2

^{*a*}(a) TESCl, DMAP, TEA, DCM; (b) MMPP on silica gel, DCM; (c) SmI₂, DMPU, MeOH, THF, 70% over three steps; (d) O₂, TPP, light, CH₃CN, 40%; (e) DBU, DCM; (f) TsOH, CDCl₃, 85% over two steps; (g) Pb(OAc)₄, benzene, 90 °C, 52%. (P = TBS).

Completion of the synthesis

Conclusion

Synthesis of *haianolidol* featuring:

- 1) 2 stereoselective 3+3 sigmatropic rearrangement
- 2) Oxydopyrylium-based 5+2 cycloaddition
- 3) Formation of tropone

This synthesis will allow preparation of derivatives and investigation of the mode of action.

Biosynthesis

Synthesis of chiral template

Synthesis of chiral template

Scheme 1. Divergent synthesis of the diene substrates. *Reagents and conditions:* (a) triethylphosphonoacetate, NaH, THF, 0 °C (74%); (b) triethylphosphonopropionate, BuLi, LiBr, MeCN, 0 °C (48%); (c) TBSCl, imidazole, DMAP, CH₂Cl₂, reflux (5: 86%; 6: 90%); (d) DIBAL-H, CH₂Cl₂, -78 °C (9: 89%; 10: 70%, two steps); (e) MnO₂, CH₂Cl₂, reflux (7: 92%; 8: 78%, two steps); (f) MePPh₃PBr, NaHMDS, THF, -78 °C; (g) TBAF, THF, 0 °C (11: 70%; 12: 67%; 13: 85%; 16: 84%, two steps; 14: 90%; 15: 58%, three steps); (h) NaH, THF, then MeI, 0 °C; (i) EtPPh₃PBr, NaHMDS, THF, -78 °C.

IMDA Selectivity

Diastereoselectivity

Diol into double bond

Oxidation Mn (III)

Oxidation VO(acac)₂

Mercury salt assisted vinylation

