Total Syntheses of (-)-Pyrimidoblamic Acid and P-3A

Adam S. Duerfeldt and Dale L. Boger

Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, California, USA

> J. Am. Chem. Soc., 2014, 136 (5), 2119–2125 DOI: 10.1021/ja412298c

Current literature Andrey Kuzovlev 06.03.2014

Streptomyces verticillus

Introduction

- Bleomycin A₂ have been isolated by Umezawa and coworkers in 1966 from *Streptomyces verticillus*.
- It is the major component of the clinical anticancer drug *Blenoxane*.
- BLM treatment is limited, because it causes many side effects.

- Each structural unit of BLM, such as (-)-Pyrimidoblamic Acid and P-3A, contributes an important role.
- Thus, identifying synthetic BLMbased analogs remains actual task.

Prior Late Stages Installations of the Benzylic C₂-Stereocenter of (-)-Pyrimidoblamic Acid

Retrosynthetic Analysis

Synthesis of Requisite N-Aminopyrazoles

Oxidative ring expansion survey

Oxidant (s)	Product(s) (% yield)
Ni ₂ O ₃	8a
MnO ₂	8a
$Pb(OAc)_4$	8a
$Pb(OAc)_4 + Ni_2O_3$	8a
AgNO ₃	no reaction
$AgNO_3 + PIDA$	5a (34%), 8a (49%)
NaIO ₄	5a (28%), 9a (70%)
NaIO ₄ , Bu ₄ NBr	5a (68-70%)
Bu ₄ NIO ₄	no reaction
I_2 , 20% aq. KHCO ₃	5a (75%)

Synthesis of Chiral Amidine 4

Optimization of the [4+2] cycloaddition reaction

Reactants	Condition	Yield, dr
2.0 equiv. amidine	CH ₃ CN, 15h, 25°C	35%, 7:1
	CH ₃ CN, 15h, 25°C	40%, 4:1
	CH ₃ CN, 15h, 85°C	58%, 3:1
	CH ₃ CN, 39h, 25°C	50%, 7:1
	CH ₃ CN, 39h, 5°C	33%, single
		diastereomer
	CH ₃ CN, 39h, 5°C	22%, 7:1
	CH ₃ CN, 24h, 5°C	43%, single
	then 17h, 25°C	diastereomer
2.0 equiv. triazine	CH ₃ CN, 20h, 5°C	46%, single
	then 1h, 25°C	diastereomer
	CH ₃ CN, 14h, 5°C	54%, single
	then 6h, 25°C	diastereomer

Completion of the Total Synthesis of (-)-Pyrimidoblamic Acid

Total Synthesis of P-3A

Conclusions

- Convergent total syntheses of (–)-pyrimidoblamic acid and P-3A with full control of the natural product stereochemistry.
- Powerful inverse electron demand [4+2] cycloaddition.
- This Diels-Alder reaction extend ability for synthesis of highly substituted and functionalized heterocycles found in complex natural products.

Thank you for your attention!

Diels-Alder reactions

Mechanism of the cycloaddition reaction

