

Natural Product Synthesis

Total Synthesis of the Antimitotic MarineMacrolide (-)- Leiodermatolide

Sankar Rao Suravarapu

Prof. Dr. Philippe Renaud University of Bern, Department of Chemistry and Biochemistry

I. Paterson et al., Angew. Chem. Int. Ed. 2014, 53, 12988

Introduction

- 1. Leiodermatolide was isolated in 2008 by the Wright group from the marine sponge *Leiodermatium sp*.
- 2. These samples were collected by submersible off the Florida coastline
- 3. Exhibits potent anti proliferative activity against a panel of human cancer cell lines

 $IC_{50} = 3.3 \text{ nM}$ for A549 lung adenocarcinoma cells = 5.0 nM for PANC-1 pancreatic carcinoma cells

A. E. Wright, J. K. Reed, J. Roberts, R. E. Longley, U.S. Pat. Appl. Publ. (USA), US2008033035, 14 pp. [*Chem. Abstr.* **2008**, *148*, 230103]

Introduction

Structural features

- 1. Triply unsaturated 16-membered macrolide contains carbamate group at C9
- 2. *E*,*E* dienyl side chain at C15 and a δ lactone ring at terminal
- 3. Contains 9 stereogenic centers

- 4. Relative configuration was elucidated by suing a combination of
 - Homo- and heteronuclear spectroscopic analysis
 - Molecular modeling and
 - Computational DP4 NMR prediction

Completion of synthesis

ÔН

Divergent Total Synthesis of the Antimitotic Agent Leiodermatolide

A. Furstner et al., Angew. Chem. Int. Ed. 2012, 51, 12041

Retrosynthetic analysis $H_2N \downarrow O$ $HO_{,,,,} \downarrow \downarrow \downarrow \downarrow$

ö

X

1

_ М

4

HŌ

''''

''''|

0

Ö

0

0

0

O

Ο

HO

Synthesis of 3

1. Bu₂OTf, Et₃N QAc Ο propanal, Et₂O 0. -78 °C, 74 % (11:1) LiHMDS, THF 0 -78 °C, 83 % 2. Ac₂O, Et₃N, DMAP ́Вп ́Вп cat., CH₂Cl₂, 0 °C Ο 82 % MesN >>> NMes (5 mol %) ΗŌ Ph ΗŌ PCy₃ -0~B (1S)-<mark>24</mark>, THF 0 0, Ο ≥[.]NMe 0 °C, 86 % 0~B 0 0 5.5:1 0 **≥**NMe 3 Major ΗÒ Ph П 0 24

End game of the synthesis

Conclusion

Paterson's approach (convergent synthesis)

Total no. of steps = 23, overall yield 3.2% Key steps: stereo controlled aldol reactions and palladium-catalyzed coupling s

Frustner's approach (highly convergent synthesis)

Total no. of steps = 19, overall yield

Key steps: RCAM/semi reduction, Julia olefination, Brown's asymmetric allylation

Thank you For your attention

