Application of Two Direct C(sp³)-H Functionalizations for the Total Synthesis of (+)-Lactacystin

S. Yoshioka, M. Nagatomo, M. Inoue *Org. Lett.*, **2015**, *17* (1), pp 90–93

Graduate School of Pharmaceutical Science The University of Tokyo, Hongo, Bungyo-ku, Tokyo DOI: 10.1021/ol503291s

Samuel Rieder, 8. Jan. 2015

- Isolated from *Streptomyces* sp. OM-6519 by Omura in 1991
- Proteasom Inhibitor, Cancer Treatment
- Significant attention as synthetic target:
 - Total Synthesis (13)
 - Corey (1992), Smith (1993), Russel (1994), Ogawa (1995), Corey (1998), Corey (1998), Masse (1999), Plamondon (1999), Hatakeyama (2004), Shibasaki (2006), Jacobsen (2006), Prodger (2008), Silverman (2011)
 - Formal Total Synthesis (12)
 - Jun (1998), Youn (1998), Ohfune (2000), Harling (2005), Bowen (2005), Jung (2007), Kobayashi (2007), Langlois (2007), Rescourio (2008), Hayes (2010), Hayes (2013), Chandrasekhar (2014)

Development Comparison to first TS

- Corey's approach (1992)

E. J. Corey, G. A. Reichard, J. Am. Chem. Soc. 1992, 114, 10677–10678.

Retrosynthetic Pathway Starting from (*S*)-pyroglutaminol (6)

Direct transformation of $C(sp^3)$ –H bonds to $C(sp^3)$ –C bonds eliminates the preactivation \rightarrow Permits design of **simpler** synthetic schemes

Synthesis Preliminary Studies, Developments

- Intermolecular C(sp³)–H functionalization

- Selectivity (*a*-N Hydrogen \rightarrow *a*-O Hydrogen \rightarrow aliphatic Hydrogen)
- Intramolecular C(sp³)–H functionalization

Norrish-Yang cyclization followed by oxidative ring opening

T. Hoshikawa, S. Kamijo, M. Inoue, *Org. Biomol. Chem.* **2013**, *11*, 164–169 S. Kamijo, T. Hoshikawa, M. Inoue, *Tetrahedron Lett.* **2010**, *51*, 872

Synthesis Exploring the Selectivity Towards Alkynylation Product

K₂CO₃ MeOH, 0 °C 54% (2 steps)

Synthesis Second C(sp³)–H Functionalization

- Norrish-Yang cyclization not working with Hg lamp, photoexcitaion of ketol \rightarrow LED longer wavelength
- Epimerization observed without Na₂CO₃

Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936

Synthesis Construction of (+)-Lactacystin I

Tamao, K.; Kawauchi, A.; Ito, Y. J. Am. Chem. Soc. **1992**, *114*, 3989 Crump, R. A. N. C.; Fleming, I.; Urch, C. J. J. Chem. Soc., Perkin Trans. 1 **1994**, 701

Synthesis Construction of (+)-Lactacystin II

Conclusion

- **Novel route** to (+)-lactacystin from (*S*)-pyroglutaminol
- "Reasonable" application of intermolecular C–H alkynylation and intramolecular C–H acylation
- **High applicability** of the two C(sp³)–H functionalizations
- High predictability of their chemoselectivities (*a*-N−H → *a*-O−H → aliphatic
 H)
- Further applications are under investigation

Thank you for your attention

Supplementary Information Intermolecular C(sp³)–H Functionalization

T. Hoshikawa, S. Kamijo, M. Inoue, Org. Biomol. Chem. 2013, 11, 164–169.

Supplementary Information Explanation for Stereochemical Outcome of Alkynylation

S. Yoshioka, M. Nagatomo, M. Inoue, Org. Lett. 2015, 17, 90–93.

Supplementary Information Protonation of Fleming-Tamao Oxidation Enolate

Supplementary Information Biosynthesis

A. Nakagawa, M. Kainosho and S. Õmura, Pure Appl. Chem. 1994, 66(10-11), 2411-2413

Supplementary Information Norrish-Yang Cyclization

S. Chiba, H. Chen, Org. Biomol. Chem., 2014, 12, 4051-4060