Literature Presentation Renaud Group

January 22th 2015

b UNIVERSITÄT BERN

J. Am. Chem. Soc. **2014**, *136*, 17738–17749. (DOI: 10.1021/ja510573v)

And

J. Am. Chem. Soc. **2014**, *136*, 17750–17756. (DOI: 10.1021/ja5109694)

Julien

About Maoecrystal V

- Isolated from *Isodon eriocalyx* (Sun & co, 1994)
- Structure assignment via crystal X-ray diffraction > (2004)
- 2 vicinal quaternary center, Strained cyclic ether, a spirolactone, a bicyclo[2.2.2]octane ring system and 6 stereogenic centers
- Cytotoxic activity against HeLa cells $(IC_{50} = 60 \text{ nM})$
- Sheng-Hong Li; Jia Wang; Xue-Mei Niu; Yun-Heng Shen; Hong-Jie Zhang; Han-Dong Sun; Ma-Lin Li; Qin-E Tian; Yang, L.; Peng

2

UNIVERSITÄT RERM

Zakarian/Davies' Synthesis

^b UNIVERSITÄT BERN

Lu, P.; Gu, Z.; Zakarian, A. *J. Am. Chem. Soc.* **2013**, *135*, 14552–14555. Lu, P.; Mailyan, A.; Gu, Z.; Guptill, D. M.; Wang, H.; Davies, H. M. L.; Zakarian, A. *J. Am. Chem. Soc.* **2014**, *136*, 17738–17749.

Zakarian/Davies' Synthesis

4

b

Lu, P.; Mailyan, A.; Gu, Z.; Guptill, D. M.; Wang, H.; Davies, H. M. L.; Zakarian, A. J. Am. Chem. Soc. 2014, 136, 17738–17749.

Zakarian/Davies' Synthesis

5

Lu, P.; Mailyan, A.; Gu, Z.; Guptill, D. M.; Wang, H.; Davies, H. M. L.; Zakarian, A. J. Am. Chem. Soc. 2014, 136, 17738–17749.

Zakarian's Synthesis

^b UNIVERSITÄT BERN

b

Lu, P.; Mailyan, A.; Gu, Z.; Guptill, D. M.; Wang, H.; Davies, H. M. L.; Zakarian, A. J. Am. Chem. Soc. 2014, 136, 17738–17749.

⁶ UNIVERSITÄT BERN

Zheng, C.; Dubovyk, I.; Lazarski, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2014, 136, 17750–17756.

Zheng, C.; Dubovyk, I.; Lazarski, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2014, 136, 17750–17756.

b

UNIVERSITÄT BERN

U

^b UNIVERSITÄT BERN

U

b

(87%)

Zheng, C.; Dubovyk, I.; Lazarski, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2014, 136, 17750–17756.

^b UNIVERSITÄT BERN

b

Zheng, C.; Dubovyk, I.; Lazarski, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2014, 136, 17750–17756.

^b UNIVERSITÄT BERN

U

b

Conclusion

- > Only 2 enantioselectives total syntheses
 - Zakarian (2014): 26 Steps, Overall Yield = 0.2%
 - Thomson (2014): 18 Steps, Overall Yield = 1%

> Key Steps:

- Zakarian: Stereoselective Rh-catalyzed C-H functionalization and intramolecular Diels-Alder
- Thomson: Heck spirocylization, oxidative cyclodearomatization, intermolecular Diels-Alder

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Thank's for your attention

Yang's Synthesis – Synthesis of the key intermediate

Gong, J.; Lin, G.; Sun, W.; Li, C.-C.; Yang, Z. J. Am. Chem. Soc. 2010, 132, 16745–16746.

b

UNIVERSITÄT

U

BERN

Yang's Synthesis – End of the Synthesis

UNIVERSITÄT BERN

^a Reagent and conditions: (a) NBS, (PhCO₂)₂, CCl₄, reflux, 2 h, 90%;
(b) Bu₃SnH, TEMPO, PhH, reflux, 2 h, 75%; (c) Zn, AcOH, THF, H₂O,
70 °C, 2 h, 85%; (d) SmI₂, THF, MeOH, rt, 10 min, 88%; (e) Lindlar cat.
MeOH, THF, rt, 2 h, 92%; (f) DMP, CH₂Cl₂, rt, 1 h, 88%; (g) DBU, toluene,
100 °C, 1 h, 48% (90% brsm).

Gong, J.; Lin, G.; Sun, W.; Li, C.-C.; Yang, Z. J. Am. Chem. Soc. 2010, 132, 16745–16746.

UNIVERSITÄT

BERN

Danishefsky's Synthesis – Synthesis of the key intermediate

Peng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 18860–18867.

Peng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 18860–18867.

b

Danishefsky's Synthesis – End of the Synthesis

Figure 10. Completion of the synthesis of maoecrystal V (1). Key: (a) Lombardo reagent, DCM, room temperature, 85%; (b) CH_2I_2 , Zn/Ag, Et_2O , 36 °C, 88%; (c) PCC, DCM, room temperature, 76%; (d) H_2 , PtO_2 , AcOH, 40%; (e) Lombardo reagent, DCM, 0 °C, 80%; (f) *p*-TsOH·H₂O, benzene, 76 °C, 85%; (g) LDA, TMSCl, THF, -78 °C, 90%; then Pd(TFA)₂, CH₃CN, 80%; (h) TFDO, CH_2CI_2 , -78 °C \rightarrow 0 °C, dr = 1:1, 90%; (i) BF₃·OEt₂, DCM, room temperature, 85%.

Peng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 18860-18867.

Zakarian's Sythesis

^b UNIVERSITÄT BERN

b

U

Table 4

entry	х	Y	reagent solvent	temp (°C), time (h)	a:b:c ^a (yield, a)
1	Н	H, OBn	Bu ₄ NF, DMSO	0, 0.2	1.0:1.8:1 (20%)
2	Н	H, OBn	Bu ₄ NF, DMSO	23, 0.2	0.9:1.5:1
3	Н	H, OBn	Bu_4NF , DMF	-20, 2	1.5:1.3:1
4	Н	H, OBn	Bu_4NF , DMF	0, 0.5	2.3:1.8:1
5	Н	H, OBn	Bu_4NF , DMF	23, 0.3	1.9:1.6:1
6	Н	H, OBn	Bu ₄ NF, DMF, (slow addition)	23, 3.2	1.6:1.3:1
7	Н	H, OBn	Bu₄NF, NMP	0, 1.0	1.4:1.7:1
8	Н	H, OBn	Bu_4NF , DMPU	0, 1.0	3.2:1.8:1
9	Н	H, OBn	Bu_4NF , DMA	0, 0.5	2.4:1.7:1
10	Н	H, OBn	Bu ₄ NF, DMSO-t-BuOH (4:1)	75, 1	0.3:1.2:1
11	Н	H, OBn	Bu₄NF, AcOH, THF	0, 1.0	no reaction
12	Н	H, OBn	CsF, t-BuOH	70, 15	no reaction
13	Н	H, OBn	Bu ₄ NPh ₃ SiF ₂ , DMSO	50, 36	0:20:1
14	Н	H, OBn	Bu4NPh3SiF2, t-BuOH	50, 15	no reaction
15	OEt	CH ₂	Bu_4NF , DMF	23, 0.2	0.8:5.1:1 (7%)
16	OEt	CH ₂	Bu₄NF, THF	23, 0.5	no reaction
17	OEt	CH ₂	Bu₄NF, MeCN	23, 0.2	0:3.4:1
18	Н	CH ₂	Bu_4NF , DMF	23, 0.5	1.1:3.6:1
19	Н	Н, ОРМВ	Bu ₄ NF, DMA	0, 1.0	2.9:2.2:1
20	Н	H, OPMB	Bu ₄ NF, DMPU	0, 1.0	3.2:1.9:1 40-50%

Lu, P.; Mailyan, A.; Gu, Z.; Guptill, D. M.; Wang, H.; Davies, H. M. L.; Zakarian, A. J. Am. Chem. Soc. 2014, 136, 17738–17749. ¹⁹

Oxidative aromatization

^b UNIVERSITÄT BERN

b

Scheme 4.

Pouységu, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66, 2235–2261.

IBX oxidation

^b UNIVERSITÄT BERN

h

Scheme 3. Proposed (A) Ionic and (B) Single Electron Transfer (SET) Mechanisms for the Oxidation of Amines Mediated by IBX

B: Single electron transfer (SET) mechanism (cannot be excluded)

Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004, 126, 5192–5201.

Allylic Bromination

D UNIVERSITÄT BERN

Dauben, H. J., Jr; McCoy, L. L. J. Am. Chem. Soc 1959, 81, 4863–4873.

Previews Syntheses

^b UNIVERSITÄT BERN

b

Gong, J.; Lin, G.; Sun, W.; Li, C.-C.; Yang, Z. *J. Am. Chem. Soc.* **2010**, *132*, 16745–16746. Peng, F.; Danishefsky, S. J. *J. Am. Chem. Soc.* **2012**, *134*, 18860–18867.

Zakarian/Davies' Strategy

b UNIVERSITÄT BERN

b

Lu, P.; Mailyan, A.; Gu, Z.; Guptill, D. M.; Wang, H.; Davies, H. M. L.; Zakarian, A. J. Am. Chem. Soc. 2014, 136, 17738–17749.

24

Thomson's Strategy

^b UNIVERSITÄT BERN

U

b

Zheng, C.; Dubovyk, I.; Lazarski, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2014, 136, 17750–17756.