Pentafulvene for the Synthesis of Complex Natural Products: Total Syntheses of (±)-Pallambins A and B

Christian Ebner, Erick M. Carreira Angew. Chem. Int. Ed. **2015**, *54*, pp–pp

Laboratorium für Organische Chemie ETH Zürich, HCI H335 DOI: 10.1002/anie.201505126

Samuel Rieder, 13th Aug 2015

Erick M. Carreira Biography

- **1963**: Born in Havana, Cuba
- **1984**: B.S. degree, University of Illinois, Scott Denmark
- **1990**: PhD degree, Harvard University, David A. Evans
- **1992**: Post-Doc, California Institute of Technology, Peter Dervan
- 1993: Assistant Professor, California Institute of Technology
- 1996: Associate Professor, California Institute of Technology
- **1997**: Full Professor, California Institute of Technology
- 1998: ETH Zurich

Research Interest

- Asymmetric synthesis of biologically active, stereochemically complex, natural products
- Unique challenges in asymmetric bond construction
- Developing catalytic and stoichiometric reagents for asymmetric stereocontrol

(±)-Pallambin A and B General Information

- Isolated from liverwort Pallavicinia ambigua
- Cyclopropane containing diterpenoid (C₁₉)
- Unprecedented and highly congested tetracyclo[4.4.0^{3,5}.0^{2,8}]decane core
- Ten contiguous stereocenters, two quaternary

Fulvene Rule of Fulvene; Synthetic Strategy

J. Thiec, J. Wiemann, Bull. Soc. Chim. Fr. 1956, 177–180

Total Synthesis from Fulvene Retrosynthesis

- Pentafulvene **not susceptible to isomerisatio**n (≠ cyclopentadiene)
- sp^2 bridge carbon atom \rightarrow wide variety of transformations

Synthesis I Diels-Alder; Early Installation of Cyclopropane

- Starting from fulvene
 - Known to undergo facile light- or heat-induced polymerization
 - Acid- and base-sensitive
 - Stable in neat form only below –70 °C

- Established cyclopropanation-protocols \rightarrow low conversion, poor chemoselectivity

B. M. Trost, R. M. Cory, *J. Org. Chem.* **1972**, *37* (8), 1106–1110 S. E. Denmark, J. P. Edwards, *J. Org. Chem.* **1991**, *56*, 6974–6981

Synthesis II Carbene Precursor

- Intermediate β-hydroxy ketone unstable → Retro aldol (DM oxidation, LA nature)
- DMP/*t*BuOH → increase **rate** of oxidation

D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156

Synthesis III C-H Insertion

R. L. Danheiser, R. F. Miller, R. G. Brisbois, S. Z. Park, *J. Org. Chem.* **1990**, *55*, 1959–1964 T. J. Maimone, J. Shi, S. Ashida, Phil S. Baran *J. Am. Chem. Soc.*, **2009**, *131* (47), 17066–17067

Synthesis IV

- DIBAI-H and *n*BuLi \rightarrow non-Lewis-acidic Li(*i*Bu)₂(*n*Bu)AIH

S. Kim, K. H. Ahn, J. Org. Chem. 1984, 49, 1717–1724

Synthesis V Introduction of the Tetrahydrofuran and the *y*-Lactone

- Separation of diastereoisomers unsuccessful \rightarrow mixture used

M. F. Semmelhack, C. Bodurow, M. Baum, *Tetrahedron Lett.* **1984**, *25*, 3171–3174 Z. Li, Y. Gao, Z. Jiao, N. Wu, D. Z. Wang, Z. Yang, *Org. Lett.* **2008**, *10*, 5163–5166

Synthesis VI Synthesis of Pallambin A and B

- Generation of the β -phosphonate (for HWE) failed
- Two-step aldol condensation

Conclusion

- First total syntheses of pallambins A and B (3.3% overall yield, 20 steps)
- Synthetic strategy centered around use of fulvene in a DA reaction
- Highly chemo- and diastereoselective cyclopropanation
- Efforts to expand use of the fulvene DA reaction are ongoing

Thank you for your attention

[1,5]-shift of Substituted Cyclopentadienes

Preparation of Pentafulvene

Wilkinson's Catalyst [RhCl(PPh₃)₃]

Hydroxylation with O₂, P(OEt)₃

Carbene, C–H insertion Mechanism not well Understood, Source of Dispute

H. M. L. Davies, T. Hansen, M. R. Churchill, *J. Am. Chem. Soc.* **2000**, *122*, 3063 D. F. Taber, K. K. You, A. L. Rheingold, *J. Am. Chem. Soc.* **1996**, *118*, 547

Carbene, C–H insertion Mechanism not well Understood, Source of Dispute

Z. Li, Y. Gao, Z. Jiao, N. Wu, D. Z. Wang, Z. Yang, Org. Lett. 2008, 10, 5163–5166

Biosynthesis

L.-N. Wang, J.-Z. Zhang, X. Li, X.-N. Wang, C.-F. Xie, J.-C. Zhou, H.-X. Lou, Org. Lett. 2012, 14, 1102–1105