Formal Total Synthesis of Echinopines A and B via $\operatorname{Cr}(0)-\operatorname{Promoted}[6 \pi+2 \pi]$ Cycloaddition

Saptarshi De, Shilpi Misra,* and James H. Rigby
Org. Lett. 2015, 17, 3230-3232

R = H, Echinopine A (1)
$\mathrm{R}=\mathrm{Me}$, Echinopine B (2)

Introduction

> James H. Rigby

- Professor \& Chair in the Organic Division at Wayne State University

- Ph.D., University of Wisconsin-Madison with Prof. B. Trost, 1973-1977
- Swiss NSF Postdoctoral Fellow, ETH-Zürich with Prof. A. Eschenmoser, 1977-1978
- NIH Post-Doctoral Fellow, Columbia University, 1978-1979
> Research Interests :
- Total synthesis of pharmacologically active natural products (Stenine, Taxol...)
- Construction of complex cyclic structures: Via cycloadditions ([4+2], [4+1], $\mathrm{Cr}(0)$ promoted higher-order cycloaddition reactions, $[6 \pi+4 \pi]$ and $[6 \pi+2 \pi] \ldots$)

Introduction

> Isolated from the roots of Echinops spinosus by Shi and Kyota in 2008

- From 3 kg roots 2 mg of each isomers
> Belong to the family Asteraceae
(from Greek "which looks like a hedgehog")

> Structures unambiguously assigned as unique [3.5.5.7]
- First example of a novel 3/5/5/7-membered ring carbon framework
- Flat chair form for the 7 membered /ring-envelope shape for the 5 membered ring

- Characterization only done with HRMS and NMR (no crystal)
- Absolute configuration in 2009: first enantioselective synthesis workers

Biosynthesis

> Plausible Biosynthetic pathway from Guaiane skeleton

Retrosynthetic Analysis

> Retrosynthesis for formal and total synthesis

Synthesis of Reagents for the Cycloaddition

> Synthesis of $\mathrm{Cr}(0)$ Complex:

- Warning! Tris(acetonitrile)chromium tricarbonyl is highly pyrophoric
- Degrades rapidly when exposed to oxygen (reasonably stable in THF solution).
\rightarrow green colored [Cr(III)] decomposition product
- Reaction monitored by TLC
- Total reaction time averaged $\sim 180 \mathrm{hr}$

Synthesis of Reagents for the Cycloaddition

> Synthesis of substituted alkyne partners

- Silylation of terminal alkyne for model study

- Usually: deprotonation of terminal alkynes with organolithium, or Grignard reagents \rightarrow addition of a silyl electrophile

Matching the counterion of the zinc catalyst with the leaving group on silicon
\rightarrow Regeneration of $\mathrm{Zn}(\mathrm{OTf})_{2} \rightarrow$ Catalytic process

Synthesis of Reagents for the Cycloaddition

> Synthesis of substitued alkynoate

- Insertion into $\mathrm{C}_{\text {alkynyl }}-\mathrm{H}$

> Mechanism

- Possible side product : allene (8\%)

- Without catalyst, with Rh complexes or Cu :

Synthesis of bicyclo[4.2.1]nonane substructure

> Model study (Known final product)

- Not really optimized (I vs Xanthate, addition of $\mathrm{AIBN} / \mathrm{Bu}_{3} \mathrm{SnH}$)
- Other starting material not complicated to do?
- Just to attribute every H or C by NMR.

Synthesis of bicyclo[4.2.1]nonane substructure

> Photochemical cycloaddition (key step)

Synthesis of bicyclo[4.2.1]nonane substructure

> Photochemical cycloaddition: methodology beyond

- Aim : produce bicyclo[4.2.1]nonane carbon skeleton \rightarrow Creation of several C-C bonds and stereocenters one pot.
- Problem usually: competitive pathway, low periselectivity level
- How? Irradiation (450-W Canrad-Hanovia medium pressure Hg vapor lamp, Pyrex filter)
- Use of Pyrex filter (cut off) to avoid
- Result: metalfree bicyclo- [4.2.1]nonadiene adducts (g_{1} \rightarrow Orientation with Cr

Synthesis of bicyclo[4.2.1]nonane substructure

> Photochemical cycloaddition: mechanism

- First proposition

- Alternative pathway

Synthesis of bicyclo[4.2.1]nonane substructure

> Photochemical cycloaddition: methodology beyond

$[6 \pi+2 \pi]$

- Exemple of polycycles with alkynes (3-component)

Synthesis of bicyclo[4.2.1]nonane substructure

- Modification on the triene

Synthesis of bicyclo[4.2.1]nonane substructure

> Photochemical cycloaddition applied to the syntheis (key step)

Synthesis of [5,5,7]tricyclic core

> Preparation of radical precursors

$$
\mathrm{X}=\mathrm{I}, 85 \%
$$

> Radical cyclisation to afford tricycle: regioseletive 5-exo trig

Final Part

> Completion of the Synthesis from Magauer and coworkers (2009)

Furukama Simmons Smith

```
    IBX, DMSO
    then NaClO
```

 2-metyl-2-butene
 72\%
 Pinnick

Echinopine B

Conclusion

$>$ Formal synthesis of Echinopine A and B in 5 steps, 26\% overall yield
> Efficient process : 10 steps if total synthesis compared to previous syntheses (more than 20 steps)
$>\operatorname{Cr}(0)$-promoted photoinduced $[6 \pi+2 \pi]$ cycloaddition as the key step
> Novel intramolecular radical cyclization step involving an inactivated cyclic diene

Thank you for your attention!

