D UNIVERSITÄT BERN

Formal Total Synthesis of Echinopines A and B via Cr(0)-Promoted $[6\pi + 2\pi]$ Cycloaddition

Saptarshi De, Shilpi Misra,* and James H. Rigby

Org. Lett. 2015, 17, 3230–3232

26.11.2015 Literature Presentation

Joséphine Cinqualbre

- > James H. Rigby
 - Professor & Chair in the Organic Division at Wayne State University
 - Ph.D., University of Wisconsin-Madison with Prof. B. Trost, 1973-1977
 - Swiss NSF Postdoctoral Fellow, ETH-Zürich with Prof. A. Eschenmoser, 1977-1978
 - NIH Post-Doctoral Fellow, Columbia University, 1978-1979
- > Research Interests :
 - Total synthesis of pharmacologically active natural products (Stenine, Taxol...)
 - Construction of complex cyclic structures: *Via* cycloadditions ([4+2], [4+1], Cr(0)-promoted higher-order cycloaddition reactions, $[6\pi+4\pi]$ and $[6\pi+2\pi]$...)

UNIVERSITÄT

Introduction

- > Isolated from the roots of *Echinops spinosus* by Shi and Kyota in 2008
 - From 3 kg roots 2 mg of each isomers
- > Belong to the family Asteraceae (from Greek "which looks like a hedgehog")
- > Structures unambiguously assigned as unique [3.5.5.7]
 - First example of a novel 3/5/5/7-membered ring carbon framework
 - Flat chair form for the 7 membered /ring-envelope shape for the 5 membered ring

 Absolute configuration in 2009: first enantioselective synthesis t workers

Biosynthesis

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Plausible Biosynthetic pathway from Guaiane skeleton

Dong, M.; Cong, B.; Yu, S.-H.; Sauriol, F.; Huo, C.-H.; Shi, Q.-W.; Gu, Y.-C.; Zamir, L. O.; Kiyota, H. Org. Lett. 2008, 10, 701–704.

Retrosynthetic Analysis

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Retrosynthesis for formal and total synthesis

Synthesis of Reagents for the Cycloaddition

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

- *Warning!* Tris(acetonitrile)chromium tricarbonyl is highly pyrophoric
- Degrades rapidly when exposed to oxygen (reasonably stable in THF solution).
 → green colored [Cr(III)] decomposition product
- Reaction monitored by TLC
- Total reaction time averaged ~180 hr

Synthesis of Reagents for the Cycloaddition

b UNIVERSITÄT RERN

b

- > Synthesis of substituted alkyne partners
 - Silylation of terminal alkyne for model study

TBSO HAPPEN H
$$CH_2Cl_2, 23 \ ^{\circ}C, 12 \ h$$
 HSO TBSO TBSO THE CH2Cl_2, 23 $^{\circ}C, 12 \ h$ TBSO TBSO TBSO TBSO THE CH2Cl_2, 23 $^{\circ}C, 12 \ h$

• Usually: deprotonation of terminal alkynes with organolithium, or Grignard reagents \rightarrow addition of a silyl electrophile

Matching the counterion of the zinc catalyst with the leaving group on silicon \rightarrow Regeneration of Zn(OTf)₂ \rightarrow Catalytic process

Rahaim, R. J.; Shaw, J. T. J. Org. Chem. 2008, 73, 2912

Synthesis of Reagents for the Cycloaddition

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

- > Synthesis of substitued alkynoate
 - Insertion into C_{alkynyl}-H

> Mechanism

Possible side product : allene (8%)

• Without catalyst, with Rh complexes or Cu:

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Model study (Known final product)

- Not really optimized (I vs Xanthate, addition of AIBN/Bu₃SnH)
- Other starting material not complicated to do?
- Just to attribute every H or C by NMR.

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Photochemical cycloaddition (key step)

b UNIVERSITÄT RERN

- > Photochemical cycloaddition: methodology beyond
 - Aim : produce bicyclo[4.2.1]nonane carbon skeleton
 - \rightarrow Creation of several C-C bonds and stereocenters one pot.
 - Problem usually: competitive pathway, low periselectivity level
 - How? Irradiation (450-W Canrad-Hanovia medium pressure Hg vapor lamp, Pyrex filter)
 - Use of Pyrex filter (cut off) to avoid

Result: metalfree bicyclo- [4.2.1]nonadiene adducts (ge
 →Orientation with Cr

$$\bigcirc_{\mathsf{M}} + \| \longrightarrow \left[\bigcirc_{\mathsf{M}} \right] \longrightarrow \bigcirc$$

- > Photochemical cycloaddition: mechanism
 - First proposition

• Alternative pathway

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Rigby, J. H.; Warshakoon, N. C.; Heeg, M. J. *J. Am. Chem. Soc.* **1996**, *118*, 6094–6095. (b) Rigby, J. H.; Heap, C. R.; Warshakoon, N. C. *Tetrahedron* **2000**, *56*, 2305–2311. (c) Rigby, J.H.; Mann, L. W.; Myers, B. J. *Tetrahedron Lett.* **2001**, *42*, 8773–8775

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

• Modification on the triene

"anti"

Rigby, J. H.; Warshakoon, N. C.; Heeg, M. J. *J. Am. Chem. Soc.* **1996**, *118*, 6094–6095. (b) Rigby, J. H.; Heap, C. R.; Warshakoon, N. C. *Tetrahedron* **2000**, *56*, 2305–2311. (c) Rigby, J.H.; Mann, L. W.; Myers, B. J. *Tetrahedron Lett.* **2001**, *42*, 8773–8775

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Photochemical cycloaddition applied to the synthesi (key step)

Synthesis of [5,5,7]tricyclic core

6 UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

> Preparation of radical precursors

X=I, 85%

> Radical cyclisation to afford tricycle: regioseletive 5-exo trig

Final Part

 $u^{\scriptscriptstyle b}$

> Completion of the Synthesis from Magauer and coworkers (2009)

Conclusion

- > Formal synthesis of Echinopine A and B in 5 steps, 26% overall yield
- Efficient process : 10 steps if total synthesis compared to previous syntheses (more than 20 steps)
- > Cr(0)-promoted photoinduced $[6\pi + 2\pi]$ cycloaddition as the key step
- > Novel intramolecular radical cyclization step involving an inactivated cyclic diene

Thank you for your attention!

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

