Enantioselective Total Synthesis of (+)-Psiguadial B

L. M. Chapman, J. C. Beck, L. Wu, S. E. Reisman *J. Am. Chem. Soc.* **2016**, *138*, 9803–9806

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology, Pasadena, California US

Samuel Rieder, 9. Jan. 2017

Sarah E. Reisman

1997-2001	B.A. Conneticut College, New London, CT
	Supervisor: Prof. Timo V. Ovsaka
2001-2006	Ph.D Yale University, New Haven, CT
	Supervisor: Prof. John L. Wood
2006-2008	NIH Postdoctoral Fello, Harvard University
	Cambridge, MA
	Supervisor: Prof. Eric N. Jacobson
2008-2014	Assistant Professor, CalTech, Pasadena, CA
2014-	Professor of Chemistry, CalTech

Research Interest

Natural Product Synthesis, Methods Development Nickel Catalysis

http://reismangroup.caltech.edu/index.html

M. Shao, et al., Org. Lett. 2010, 12, 5040–5043

3

hepatocellular carcinoma.

cells. More often called hepatocarcinoma or

- Biosynthesis $\rightarrow \beta$ -caryophyllene (sesquiterpenoid)
- Key Challenges
 - Bicyclo[4.3.1]decane trans-fused to cyclobutane
 - Synthesis of A–B–C ring system
 - Strategic formation of C1–C2 bond
 - Control of enantioselectivity

Hepatoma cells (HepG2 $IC_{50} = 46$ nM) Hepatoma: Cancer originating in the liver, in liver

First enantioselective total synthesis

(+)-Psiguadial B

Information; Biosynthesis

- Isolated by Shao in 2010 from Psidium guajava
- Exhibits potent antiproliferative activity against human hepatoma cells (HepG2 $IC_{50} = 46 \text{ nM}$)

(+)-Psiguadial B Biosynthesis

(+)-Psiguadial B Retrosynthetic Analysis

Synthesis I Optimisation of the Tandem Wolff Rearrangement

Side-Discussion on Ketenes History; Properties

- Hermann Staudinger

- Electrophile (at C₂ or O): perpendicular to the ketene plane
- Nucleophile (at C₁): in ketene plane

T. T. Tidwell, Ketenes II, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006.

Side-Discussion on Ketenes

Preparation from Carboxylic Acid Derivatives

- α-halo carboxylic derivatives (Staudinger)
- Acyl chlorides (Wedekind)

- Anhydrides

- Esters (E1cB)

Side-Discussion on Ketenes

Wolff Rearrangement

- Ludwig Wolff (1902)

- Reactions of carbonylcarbenes that can compete with the Wolff rearrangement

Synthesis II C(sp³)-alkenylation; Epimerization I

- Undesired enantiomer is obtained
- (-)-cinchonine did not help
 - Pseudoenantiomeric catalyst ent-product with 58% ee

D. J. A. Schedler, J. Li, B. Ganem, J. Org. Chem. 1996, 61, 4115-4119.

Synthesis III C(sp³)-alkenylation; Epimerization II

- **Desired** enantiomer obtained
- Acetal as coupling partner \rightarrow elimination of linear protection step

D. J. A. Schedler, J. Li, B. Ganem, J. Org. Chem. 1996, 61, 4115–4119.

Synthesis IV Completion of the Synthesis I

- **Gilman's** reagent furnished product in moderate yield (dr 3:1)
- Extensive experimentation to **improve dr** unsuccessful

Synthesis V Completion of the Synthesis II

Synthesis VI Completion of the Synthesis III

Conclusion

- (+)-psiguadial obtained in 15 steps from diazoketone
- Spectroscopically identical with natural sample reported by Shao
- De novo construction of trans-fused cyclobutane ring
- Pd-catalyzed C(sp³)–H alkenylation
- Expansion of sequence scope to other cyclobutanes ongoing

Thank you for your attention

Backup-Slide I Screened Catalysts for the Wolff Rearrangement

Backup-Slide II Asymmetric Catalysis of Amide Formation

Backup-Slide III Coupling with Pd(OAc)2

G. He, G. Chen, *Angew. Chem. Int. Ed.* **2011**, *50*, 5192–5196 V. G. Zaitsev, D. Shabashov, O. Daugulis, *J. Am. Chem. Soc.* **2005**, *127*, 13154–13155.

Backup-Slide IV Schwartz Reduction

D. J. A. Schedler, J. Li, B. Ganem, J. Org. Chem. 1996, 61, 4115-4119.

Backup-Slide V Copper Catalyzed Alkylation

- stronger coordinating solvents are used than with dialkylzinc reagents (Et₂O or THF instead of toluene or CH₂Cl₂) as this allows the cleavage of the AIR₃ dimeric species, thus increasing its reactivity
- 18 h at -30 °C; more rapidly at higher temperatures but decrease in ee

Backup-Slide VI Crabtree's Catalyst

T. L. Church, P. G. Andersson, Coord. Chem. Rev. 2008, 252, 513–531

Backup-Slide VII Copper Catalyzed *O*-arylation; Ullmann

