

A Double Allylation Strategy for Gram-Scale Guaianolide Production: Total Synthesis of (+)-Mikanokryptin

X. Hu, K. S. Xu, T. J. Maimone *Angew. Chem. Int. Ed.* **2017**, *56*, 1624.

Melinda Mojzesová University of Bern

02.02.2017, Journal Club

Mykanokryptin

Thomas J. Maimone (UC-Berkeley)

b UNIVERSITÄT BERN

- ❖ B.S. University of California, Berkeley (2004, D. Trauner)
- ❖ Ph.D. The Scripps Research Institute, CA (2009, P. Baran)
- Postdoctoral Fellow, Massachusetts Institute of Technology (2009-2012, S. Buchwald)
- Since 2012 Assistant Professor

Research:

- total synthesis of complex, biologically active natural products with relevance to issues of human health

UNIVERSITÄT Bern

- first isolated in 1975 by Herz and co-workers from Mikania scandens
- belongs to the family of trans-fused 8,12-guaianolides

6,12-guaianolide

b UNIVERSITÄT BERN

Developing a synthetic route...

Forward Synthesis – western fragment

b UNIVERSITÄT BERN

Forward Synthesis – allylation reactions

RO TESOTÍ

In, 8

$$H_2O$$
, DMF

 67% (d.r. 2:1)

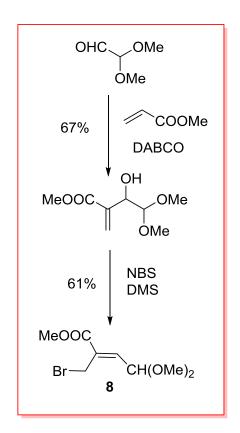
 11 g scale

 11 g scale

RO TESOTÍ

CH(OMe)₂
 11 TESOTÍ

COllidine


DCM

 78%
 7 g scale

 10
 7 g scale

 10
 7 g scale

 10
 11
 11

Metal-mediated allylation conditions

b UNIVERSITÄT

Me H CI - CHO Et ₃ SiO COOMe	metal-mediated allylation (R = TBDPS)	RO H H H H	RO + COOMe Et ₃ SiO CHO	RO HOOME
10		11	14	15

Entry	Conditions ^[a]	Yield [%] ^[b]			
		11	14	15	rsm ^[c]
1	CrCl ₂ , cat. NiCl ₂ , DMF, 60°C	10 ^[d]	17	_	_
2	In ⁰ , Nal, DMF, 60°C	13 ^[e]	_	_	_
3 ^[f]	Nal; Sml ₂ , HMPA-THF, -78°C	27 ^[d]	17	_	_
4 ^[f]	Nal; Zn ⁰ , aq. NH₄Cl, THF, rt	0	51	_	34
5 ^[f]	Nal; Mg ⁰ , cat. (CH ₂ Br) ₂ , THF, rt	0	_	_	_
6 ^[f]	Nal; iPrMgCl, THF, 0°C	0	_	_	_
7 ^[f]	Nal; SnCl ₂ , DMF, rt	53 ^[e]	_	20	9
8 ^[g]	SnCl₂, NaI, DMF, 60 °C	90 ^[e]	-	-	-

Forward Synthesis – redox manipulations

Conclusion

- short (8 steps), enantiospecific, gram-scale total synthesis of mikanokryptin from (+)-carvone in 6% overall yield
- first gram-scale synthesis of guaianolides
- through variation of allylation processes, the synthesis of other 8,12-guaianolides should be possible