b UNIVERSITÄT BERN

Enentiospecific Total Synthesis of the Highly Strained (–)-Persilphiperfolan-8-ol via Pd-Catalyzed Tandem Cyclozation

P. Hu and S. A. Snyder, J. Am. Chem. Soc. 2017, 139, 5007.

Daniel Meyer University of Bern

05.07.2017, Journal Club

Scott A. Snyder

- > Undergraduate studies in Williamstown
- > PhD at K. C. Nicolaou (Scripps)
- > Postdoc E. J. Corey (Harvard University)
- Independent career (Columbia University)
- Associate Professor (Scripps)
- > Development of new reagents
- > Methods for rapid polycycle construction
- > Total synthesis

b UNIVERSITÄT BERN

Strain in Natural Products

Bent arene rings

Medium sized rings with multiple sites of unsaturation

Strain in Natural Products

C. M. Williams et al., Angew. Chem. Int. Ed. 2014, 53, 13664-13688.

Strain in Natural Products

^b UNIVERSITÄT BERN

- <u>trans</u>-bicyclo[3.3.0]octanes
 - Strain energy of *trans* 6-13 kcal/mol higher then *cis*
- > Only 10 out of 2000 bicyclo[3.3.0]octanes are *trans*
- > To date 4 natural product synthesized with this structure

b

L,

b

TMS TiCl₄' LDA, Br Ĥ Ĥ then KOH Ö 90% 5:1 dr (R)-pulegone 70% 4:1 dr KHMDS, CI 85% Õ-TiCI IO_TICI3 ,SiMe₃ 5:1 r.r. TiCl₄ Ph $so_2 CF_3$ - Cl Ρh SiMe₃ ⁷.0−TiCl₃ /Õ−TiCl₃ 0 ОH H₂O Ph-Ŧ١ CL Ph-Ph Ph— ÓTf ŚiMe₃

b UNIVERSITÄT BERN

Ь

U

D UNIVERSITÄT BERN

b

U

$u^{\scriptscriptstyle b}$

Forward Synthesis

b UNIVERSITÄT BERN

b UNIVERSITÄT BERN

b

Conclusion

^b UNIVERSITÄT BERN

- First total synthesis of (-)-persilphiperfolan-8-ol
- > 4.4% yield over 13 steps
- Key step is the Pd-catalysed tandem cyclization

Diazo transfer

b UNIVERSITÄT BERN

b

U

 \mathbf{R}^2

ÓΘ

R1

ő

 R^2

Ô

R1

ΘQ

Wolff rearrangement

b UNIVERSITÄT BERN

Ь

U

