Journal Club

Nick Tappin Renaud Group 15 March 2018

Total Synthesis and Stereochemical Revision of Iriomoteolide-2a

Keita Sakamoto, Akihiro Hukamata, Masashi Tsuda, and Haruhiko Fuwa* *Angew. Chem. Int. Ed.* **2018,** 57, ASAP. DOI: 10.1002/anie.201800507

Haruhiko Fuwa

- 1993-1997: The University of Tokyo, BSc in Chemistry, 1997-1999: The University of Tokyo, MSc in Organic Chemistry, 1999-2002: The University of Tokyo, PhD
- Tohoku University (2006-2009) Assistant Professor
- Tohoku University (2009-2017) Associate Professor, group of Makoto Sasaki
- Chuo University (2017-) Professor
- Working predominantly on marine natural products (>100 publications)

Stereochemical concerns

Stereochemical concerns

Retrosynthetic analysis

Seperating the problems

Retrosynthetic analysis

Synthesis of vinyl iodide, 4

Stannylcupration

18

NHK reaction

Endgame, wrong epimer

Other epimer's fragment

Other epimers

Correct epimer is 3!

Specific rotation's were inaccurate (even by sign), so *ent*-**3** was synthesized! Looksee the chiral LC-MS

Thanks for attention!

And

any questions?

OPMB deprotection by Ox SET (c.f. Birch)

OBn protection by TriBOT

Protection of Hydroxyl Compounds

Inexpensive stable crystalline 2,4,6-tris(benzyloxy)-1,3,5-triazine (TriBOT) can be used as an acid-catalyzed O-benzylating reagent. The reaction of various functionalized alcohols with 0.4 equiv of TriBOT in the presence of trifluoromethanesulfonic acid afforded benzyl ethers in good yields. TriBOT, which is the formal trimerization of the smallest unit of benzyl imidate, offers high atom economy. K. Yamada, H. Fujita, M. Kunishima, *Org. Lett.*, **2012**, *14*, 5026-5029.

http://www.organic-chemistry.org/protectivegroups/hydroxyl/benzyl-ethers.htm

OBn deprotection by red SET (c.f. Birch) from LiDBB

All of the simple hydrocarbon lithium reagents (n-BuLi, s-BuLi, t-BuLi, MeLi, PhLi) are prepared by reduction of RCI with Lio

n-Bu-Cl + Li° ----- [n-Bu-ClLi⁺ ---- Bu + Li⁺Cl⁻] ----- Bu-Li + LiCl ↑

These reductions are much improved if soluble lithium-arene radical anion solutions are used, instead of Liº.

Alkyl phenyl sulfides and selenides can also be reduced:

 $R^{-}Li^{+} + SPh$ $R^{-}Li^{+} + SPh$ $R^{-}Li^{+} + Li^{+}SPh$ $R^{-}Li^{+} + Li^{+}SPh$ $R^{-}Li^{+}SPh$ $R^{-}Li^{+}SPh$ $R^{-}Li^{+}SPh$ $R^{-}Li^{+}SPh$

The relative stability of the two radicals (R_{\bullet} and Ph_{\bullet}) is a good predictor of which bond fragments. Thus, even though Ph_{\bullet} is more stable than R_{\bullet} , mostly or exclusively R_{\bullet} is formed.

The reaction can be used in quite complex systems: Dihydroerythronolide: G. Stork, S. D. Rychnovsky, J. Am. Chem. Soc., 1987, 109, 1565.

http://www.chem.wisc.edu/areas/reich/chem842/_chem842-02-orgli%7B10%7D.htm

CBS reduction (c.f. 1,2-metal hydride, Noyori, Midland Alpine Borane)

The enantioselective reduction of ketones using borane and a chiral oxazaborolidine as catalyst (CBS catalyst). Usually, MeCBS is used (R" = Me, but selectivity may be increased by varying this substituent).

Mechanism of the Corey-Bakshi-Shibata Reduction

The mechanism depicted (E. J. Corey, C. J. Helal, Angewandte Chem. Int. Ed., **1998**, 37, 1986-2012. DOI) portrays the rationale for the enantioselectivity and high reaction rates, which are influenced only by the CBS catalyst. This catalyst is a combination of both a Lewis acid and a chiral auxiliary!

E. J. Corey, C. J. Helal, Tetrahedron Lett. 1995, 36, 9153 http://www.organic-chemistry.org/namedreactions/corey-bakshi-shibata-reduction.shtm

Sharpless asymmetric epoxidation (c.f. dihydroxylation)

Backup slides: Parikh-Doering Oxidation (c.f. Swern Oxidation)

of base deprotonates the alkoxysulfonium ion to give sulfur ylide 7 and removes the pyridinium sulfate c sition state to give the desired ketone or aldehyde 8, as well as an equivalent of dimethyl sulfide.

https://en.wikipedia.org/wiki/Parikh%E2%80%93Doering_oxidation

Backup slides: Bestmann-Ohira (c.f. Seyferth-Gilbert and Corey-Fuchs)

https://chemistry.stackexchange.com/questions/70653/mechanism-of-homologation-of-aldehyde-to-alkyne-ohira-bestmann-reaction

