Renaud Group Exercise Set

Spectroscopy

1. Deduce the structures for compounds A, B, and C

Mechanism

2. Propose a structure for the missing intermediates and rationalize the outcomes by use of mechanism. Hint: draw the structures in 3-D.

Synthesis

3. Suggest how to effect the transformation from the methyl cyclopentenone to the epoxide.
4. Propose missing compound 8 . Can you suggest a why one diastereoisomer is major?
5. Suggest how to effect the transformation from $\mathbf{8}$ to the allylic acetate, rationalizing E / Z control.

Mechanism

6. Propose a mechanism from the allylic acetate to the β-vinyl carboxylic acid. Name this reaction. Rationalize the stereochemical outcome.
7. Give the mechanism (and conditions) of the Swern Oxidation.

8. Suggest a mechanism for the Sml_{2}-mediated coupling. Attempt to justify the diastereoselectivity with use of a 3-D samarium-chelate TS. What could another TS look like and why does the reaction not proceed through that one?

9. The synthesis of a tertiary alcohol is not always evident. Outline the hydroxlation reaction with OsO_{4} briefly justifying chemeoselectivity.
10. Explain, with mechanisms, the final sequence to furnish the natural product (\pm)-jiadifenolide.

final sequence
i) cat. $\mathrm{OsO}_{4}, \mathrm{NMO}$, pyr
ii) cat. TPAP, NMO
iii) HF.pyr

(\pm)-jiadifenolide.

Spectroscopy

Purpose: to remind/ practise some spectroscopy, particularly the utility of IR.
adapted from pp 246, Spectroscopic methods in organic chemistry, 6th Ed., D. Williams, I. Fleming, McGraw-Hill, 2008
IR and ${ }^{13} \mathrm{C}$ indicates clearly two carbonyls, $\quad \mathrm{H}_{2} \mathrm{O}$ one a ketone and the other an ester (fits elemental, i.e. O_{3}). There are no upfield methylene shifts suggesting that all CH 2 units experience EW effect of carbonyls. Shift at 51 indicates ajacency to e-neg heteroatom.

5-methyldihydrofuran-2(3H)-one

IR: 1745 and $1720 \mathrm{~cm}^{-1}$ ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta 208,172$, 51, 37, 32, and 27

2. Barton Nitrile Ester Reaction

Purpose: To see another radical cascade reaction coming form the Barton lab. To practise drawing 6-membered rings in 3-D

NOCl, pyr.

No

ratio of $1: 1$ since the reaction is fast and reversible and there is no particular stabilization of one radical or another.

Collect. Czech. Chem. Commun. 1988, 53, 118-131
http://dx.doi.org/10.1135/cccc19880118

(20 g scale)
This is the same idea as above: H-atom abstraction from alkoxy radical to an axially orientated methyl group on a chloresterol-like skeleton.

J. Org. Chem., 1997, 62 (4), pp 960-966

DOI: 10.1021/jo9615864

Synthesis
Paterson ACIE 2014, 53, 7288
3. Suggest how to effect the transformation from the methyl cyclopentenone to the epoxide.
4. Propose missing compound 8. Can you suggest a why one diastereoisomer is major?
5. Suggest how to effect the transformation from 8 to the allylic acetate, rationalizing E / Z control.

Purpose: To think about some simple synthesis from very common SM, particularly how to control the outcomes (diastereoselective and regioselective).

4. Regiocontrol: Luche diatereocontrol: allylic alchol

5.

The Hydride migration comes from below the epoxide, thus setting the stereochem at the methyl group
would be stereospecific, but have a d.r. 19:1 which means a second pathway is in operation (see below)

In order to exaplin the formation of the minor stereoisomer, or indeed to provide an alternative (possibly more likely) mechanism (this is my theory and not supported in litereature).....

6.

HWE

E-alkene is produced.

Ireland-Claisen
Δ, PhH
[3,3]-otropic rearrangment

7. Swern Oxidation.

Purpose: To think more deeply about this common (and easy?) mechanism: to point out all details and how they make sense with the reaction conditions. To illustrate the pummerer rearrangment.

A good textbook will provide a complete mechanism.

Mechanism of the Swern Oxidation

Dimethylchlorosulphonium ion is generated in situ from DMSO and oxalyl chloride.

The reaction with an alcohol at $-78^{\circ} \mathrm{C}$ leads to an alkoxysulphonium ion:

Deprotonation of this intermediate gives a sulphur ylide, which undergoes intramolecular deprotonation via a five-membere the product and DMS (odour!):

If the temperature is not kept near $-78^{\circ} \mathrm{C}$, mixed thioacetals may result:

Control Temp:
Pumerer rearrangment above $-60^{\circ} \mathrm{C}$
8. Purpose: to revist (again) the SmI2 reduction mechanism and see hpw it may be used on some exciting cyclization chemistry with an unsaturated lactone. To think about diastereomeric TSs.

(a)

(b)

Figure 1. a) X-ray crystal structure of alcohol 17. b) Possible samariumchelate transition structure leading to 16.

alternatively....

non-chelate TS
bulky OR group forced equatorial apparently higher energy/ doesn't proceed
9. Purpose: to remind about hemiketals and their instability to give back ketones. To think about chemoselective dihydroxylation reactions.

ii) cat. $\mathrm{OsO}_{4}, \mathrm{NMO}$

relatively electron poor
terminal alkyl olefin (c.f. silyl enol ether)
not touched by e-defeicient OsO4 catalyst.

10. Purpose: to encourage thoughts about an astute and highly intelligent first disconnection that unviels two annulations by encompasing a ketalization under oxidative conditions. To see the use of an alkene as a latent diol/ reactive glyoxal.

