Total Synthesis of Ingenol

Questions

1. Explain the stereoselectivity observed for the formation of compounds $\mathbf{2}$ and $\mathbf{3}$.
2. Give the three missing steps between $\mathbf{4}$ and $\mathbf{5}$ (not a substitution).
3. Explain the mechanism for the formation of 7 . Can you suggest an alternative product which is formed when a weaker Lewis acid is used?
4. Give the mechanism for the formation of $\mathbf{9}$, and name the reaction.
5. Give the missing compound 11, and the mechanisms of the three steps yielding to it.

Solutions

Article:

K. Tanino, K. Onuki, K. Asano, M. Miyashita, T. Nakamura, Y. Takahashi, I. Kuwajima, J. Am. Chem. Soc., 2003, 125 (6), pp 1498-1500. DOI: 10.1021/ja029226n-Total Synthesis of Ingenol

1. - Formation of compound 2: the conformation of the α-methoxyketone would be restricted by forming a five-membered chelate ring. The lithium enolate of tert-butyl acetate would then attack the carbonyl group from the opposite side of the side chain (Figure 1, A).

- Formation of compound 3: the absence of trimethylaluminium during the reaction failed to give compound 3. Thus, it was supposed that the formation of a six-membered cyclic aluminium enolate intermediate would be essential for the stereoselective cyclization reaction (Figure 1, B).

(A)

(B)

Figure 1. Suggested intermediates of the stereoselective $\mathrm{C}-\mathrm{C}$ bond-forming reactions.
2. Missing steps: i) Parikh-Doering Oxidation; ii) Horner-Wadsworth-Emmons Reaction;
iii) Fritsch-Buttenberg-Wiechell Rearrangement

3. Mechanism for the formation of compound 7:

Under the influence of methylaluminium bis(2,6-dimethyl-4-nitrophenoxide), cobalt complex 6 underwent a cyclization reaction to afford allyl alcohol 7. However, by using a lower Lewisacidic aluminium reagent, the formation of 7^{\prime} could have been observed. ${ }^{[1]}$
${ }^{[1]}$ T. Nakamura, T. Matsui, K. Tanino, I. Kuwajima, J. Org. Chem. 1997, 62, 3032 - 3033
4. Mechanism for the formation of compound $\mathbf{9}$:

Aluminium complex would coordinated first with epoxy oxygen (see scheme below), facilitating a bond cleavage between this oxygen and the crowded quaternary carbon center, forming the C -carbocation intermediate. ${ }^{[2]}$

${ }^{[2]}$ Y. Qiang Tu, L. Dong Sun, P. Zhen Wang, J. Org. Chem. 1999, 64, $629-633$
5. - Mechanisms of the three steps and structure of compound 11:

