D UNIVERSITÄT BERN

b

**Topic Review Group meeting** 

#### **Memory of chirality**

**Christian Gloor** 

Based on: Zhao, H.; Hsu, D. C.; Carlier, P.R. Synthesis 2005, 1, 1.

### **Table of content**

- > Definitions of memory of chirality
- > Types of chirality
- > Requirements for memory of chirality
- > Memory of chirality in enolate chemistry
- > Memory of chirality in radical chemistry
- > Memory of chirality involving carbocation intermediates
- > Conclusion

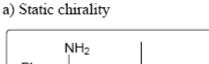
b Universität Bern

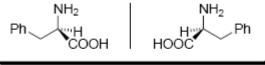


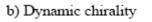
### Definitions of memory of chirality

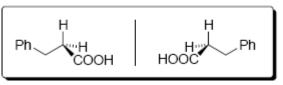


- Central chirality at a carbon alpha to a carbonyl group is preserved as transient axial chirality of the intermediate enolate and is then regenerated as central chirality in the reaction product (memory of chirality).<sup>1</sup>
- > The chirality of the starting material is preserved in a reactive intermediate for a limited time.<sup>2</sup>
- The chirality of a starting material having a chiral sp<sup>3</sup>-carbon is preserved in the reaction product even though the reaction proceeds at the chiral carbon as a reaction center through reactive intermediates such as carbanion, singlet monoradicals, biradicals, or carbenium ions.<sup>3</sup>


<sup>1</sup> Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. **1991,** *113,* 9694.


<sup>2</sup> Fuji, K.; Kawabata, T. Chem.–Eur. J. **1998**, 4, 373.


### **Types of Chirality**





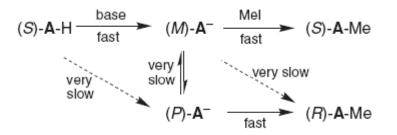








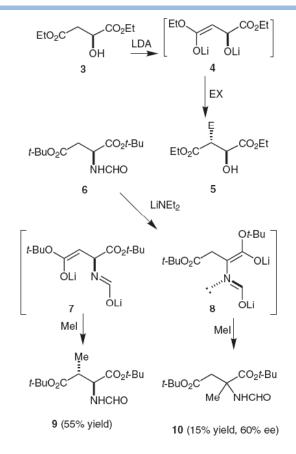

> Dynamic chirality is not a sufficient condition for MOC since the intermediate has to be formed enantioselectively.


<sup>1</sup> Fuji, K.; Kawabata, T. Chem.-Eur. J. **1998**, 4, 373.



### **Requirements for memory of chirality**

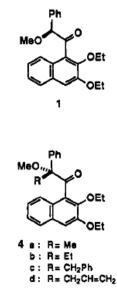
<sup>b</sup> UNIVERSITÄT BERN


> The three requirements for memory of chirality are:1



<sup>1</sup> Zhao, H.; Hsu, D.C.; Carlier, P.R. Synthesis **2005**, *1*, 1.




<sup>b</sup> UNIVERSITÄT BERN



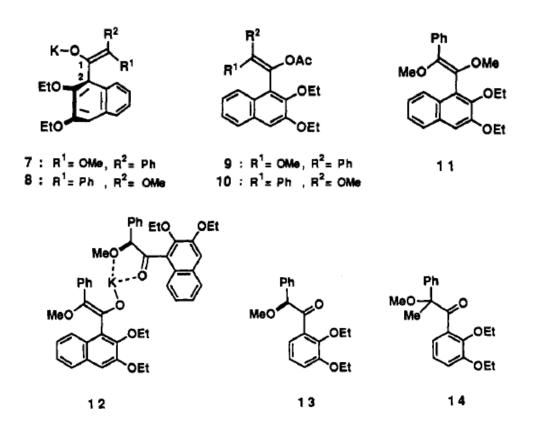
- > Seebach, D.; Wasmuth, D. Angew. Chem. **1981**, *93*, 1007.
- > Zhao, H.; Hsu, D. C.; Carlier, P.R. Synthesis **2005**, *1*, 1.



b UNIVERSITÄT BERN



| Table I. Enantioselective Alky | lation of 1 <sup>a</sup> |
|--------------------------------|--------------------------|
|--------------------------------|--------------------------|


| entry | RX                   | product <sup>b</sup> | yield, % | ee,° % | $[\alpha]^{20}{}_{\rm D}(c)^d$ | confign |
|-------|----------------------|----------------------|----------|--------|--------------------------------|---------|
| 1     | Mel                  | 4a                   | 48       | 66     | -15.8° (2.3)                   | R       |
| 2     | EtI                  | 4b                   | 27       | 65     | +18.5° (1.3)                   | R       |
| 3     | PhCH <sub>2</sub> Br | 4c                   | 31       | 67     | $+25.6^{\circ}(2.3)$           | е       |
| 4     | CH2=CHCH2Br          | 4d                   | 36       | 48     | +13.9° (1.8)                   | е       |

<sup>a</sup>Chiral ketone 1 of 93% ee was used. For the experimental procedure, see ref 9. <sup>b</sup>Enol ethers were also obtained in 12-30% yield. <sup>c</sup>Determined by HPLC analysis (CHIRALPAK AD, hexane:2-propanol = 95:5). <sup>d</sup> Measured in chloroform. <sup>c</sup>Not determined.

> Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. **1991**, *113*, 9694.



b UNIVERSITÄT BERN



> Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. **1991**, *113*, 9694.



#### <sup>D</sup> UNIVERSITÄT BERN

|           | Ph<br>R               | •                                  | i) base<br>ii) Mel / THF | Ph<br>Me<br>2 | <<br>N-R <sup>2</sup><br>R <sup>1</sup> |                   |
|-----------|-----------------------|------------------------------------|--------------------------|---------------|-----------------------------------------|-------------------|
| compd     | <b>R</b> <sup>1</sup> | <b>R</b> <sup>2</sup>              | base                     | product       | yield, %                                | % ee <sup>b</sup> |
| 1a        | Me                    | CH <sub>2</sub> Ph                 | LDA                      | 2a            | 45                                      | $\sim 0^{c}$      |
| 1b        | Me                    | CHO                                | LHMDS <sup>d</sup>       | 2b            | 66                                      | $\sim 0$          |
| 1c        | Me                    | COPh                               | LDA                      | 2c            | 50                                      | 12                |
| 1d        | Me                    | CO <sub>2</sub> CH <sub>2</sub> Ph | LHMDS                    | 2d            | <b>40</b> <sup>f</sup>                  | 26                |
| 1e        | Me                    | CO <sub>2</sub> Ad <sup>g</sup>    | LHMDS                    | 2e            | 38                                      | 35                |
| <b>1f</b> | Me                    | CO <sub>2</sub> 'Bu                | LHMDS                    | 2f            | 30/                                     | 36                |
| 1g        | Н                     | CO <sub>2</sub> <sup>t</sup> Bu    | LDA <sup><i>h</i></sup>  | 2g            | 57                                      | ~0                |

<sup>a</sup> Substrate 1 of >84% ee was treated with the base (1.1-1.8 equiv)at -78 °C for 30-60 min followed by methyl iodide at -78 °C to room temperature. Reactions were run in THF unless otherwise indicated. <sup>b</sup> Ee was determined by HPLC analysis using Daicel CHIRALCEL OD (5% <sup>i</sup>PrOH-hexane) after conversion to 2c unless otherwise indicated. <sup>c</sup> Determined on 2a using Daicel CHIRALCEL OJ (1% <sup>i</sup>PrOH-hexane). <sup>d</sup> Lithium hexamethyldisilazide. <sup>e</sup> Run in THF-DMF (10:1). <sup>f</sup> Overall yield of 2c. <sup>g</sup> 1-Adamantyl ester. <sup>h</sup> The amount of base used was 2.4 equiv.

**Table 2.** Asymmetric  $\alpha$ -Methylation of  $3^a$ 

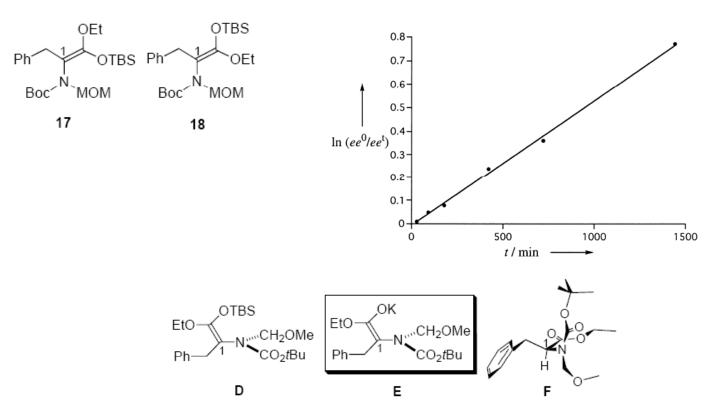
| entry | base  | equiv<br>of base | yield<br>of <b>5</b> , % | ee of<br><b>6</b> , <sup>b</sup> % | recovery<br>of <b>3</b> , % | ee of<br>recovered<br>$3,^c \%$ |
|-------|-------|------------------|--------------------------|------------------------------------|-----------------------------|---------------------------------|
| 1     | LTMP  | 1.1              | 38                       | 79 (S)                             | 23                          | 87                              |
| 2     | LDA   | 1.2              | 57                       | 22(S)                              | 25                          | d                               |
| 3     | LHMDS | 1.2              | 0e                       |                                    | d                           | đ                               |
| 4     | KHMDS | 1.2              | 79                       | 20(R)                              | 0                           |                                 |
| 5     | LTMP  | 1.0              | 40                       | 82 (S)                             | 36                          | 92                              |
| 6     | LTMP  | 1.5              | 42                       | 77 (S)                             | 17                          | 73                              |
| 7     | LTMP  | 2.0              | 42                       | 73 (S)                             | 13                          | 48                              |
| 8     | LTMP  | 4.0              | 36                       | 66 (S)                             | 13                          | 54                              |
| 9     | LTMP  | 6.0              | 37                       | 55 (S)                             | 22                          | 48                              |
|       |       |                  |                          |                                    |                             |                                 |

<sup>a</sup> 3 (98% ee) was treated with the base in THF at -78 °C for 15 min followed by methyl iodide at -78 °C for 4 h. <sup>b</sup> Determined by HPLC analysis using Daicel CHIRALPAK AS (3% EtOH-hexane). The letter in the parentheses indicates the absolute configuration. <sup>c</sup> The absolute configuration was S in each entry. Ee was determined by HPLC analysis using Daicel CHIRALPAK AS (3% EtOH-hexane). <sup>d</sup> Not determined. <sup>c</sup> This result was in sharp contrast to that from 1 (Table 1, 1f). Reproducibility of the results was confirmed by repeated experiments.



b UNIVERSITÄT BERN

Table 1. Asymmetric  $\alpha$ -methylation of  $\alpha$ -amino acid derivatives.<sup>[a]</sup>

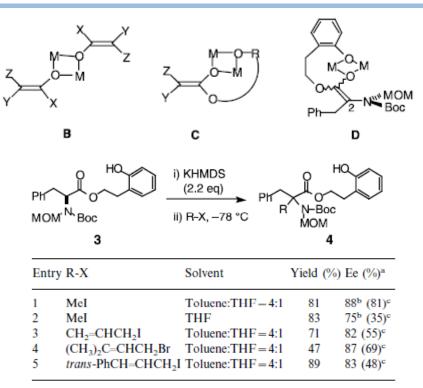

|       |                                             | R<br>H <sup>M</sup> N-CH <sub>2</sub> OMe<br>CO <sub>2</sub> tBu |                   | ►<br>F:toluene (1:4)<br>3 °C | R<br>Me <sup>winn</sup> N-CH<br>CO <sub>2</sub> tBr | <sub>2</sub> OMe                                  |                              |
|-------|---------------------------------------------|------------------------------------------------------------------|-------------------|------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------|
| Entry | R                                           | Substrate <sup>[b]</sup>                                         | Product           | Yield [%]                    | ee [%] <sup>[c]</sup>                               | $[\alpha]^{20}_{\rm D}$ (c in CHCl <sub>3</sub> ) | Configuration <sup>[d]</sup> |
| 1     | PhCH <sub>2</sub>                           | 3                                                                | 4                 | 96                           | 81                                                  | - 89 (1.2)                                        | S                            |
| 2     | tBuOCO <sup>−</sup> N→−CH <sub>2</sub>      | 5                                                                | 6                 | 83                           | 93                                                  | - 43 (1.1)                                        | [e]                          |
| 3     | MeOCH <sub>2</sub> O-CH <sub>2</sub>        | 7                                                                | 8                 | 94                           | 79                                                  | - 81 (1.0)                                        | S                            |
| 4     | MeO<br>MeO<br>CH <sub>2</sub>               | 9                                                                | 10                | 95                           | 80                                                  | - 96 (1.0)                                        | S                            |
| 5     | CH <sub>2</sub><br>N<br>CH <sub>2</sub> OMe | 11                                                               | 12                | 88                           | 76                                                  | - 64 (0.9)                                        | [e]                          |
| 6     | Me <sub>2</sub> CH                          | 13                                                               | 14 <sup>[f]</sup> | 81                           | 87                                                  | $+8.5 (1.2)^{[g]}$                                | S                            |
| 7     | Me <sub>2</sub> CHCH <sub>2</sub>           | 15                                                               | 16 <sup>[f]</sup> | 78                           | 78                                                  | $+20 \ (0.5)^{[g]}$                               | S                            |

[a] The substrate was treated with 1.1 equiv of KHMDS at  $-78 \degree C$  for 30 min (for 3, 5, 7, 9, and 11) or 60 min (for 13 and 15) followed by 10 equiv of methyl iodide for 16–17 h at  $-78 \degree C$ . See the Supporting Information for the experimental procedure and physical data. [b] The *ee* value of each substrate is >99%. [c] Determined by HPLC using columns with chiral stationary phases: 4: Chiralpack AD, 2% *i*PrOH in hexane; 6, 8: Chiralpack AD, 5% EtOH in hexane; 10, 12: Chiralpack AD, 5% *i*PrOH in hexane; 14 (benzoate): Chiralpack AS, 3% *i*PrOH in hexane; 16 (benzoate): Chiralpack AD, 1% *i*PrOH in hexane. [d] Absolute configuration of the corresponding  $\alpha$ -methyl- $\alpha$ -amino acid. [e] Not determined. [f] Obtained as an inseparable mixture with the substrate. The yield was determined on the basis of the ratio of signals observed in the 400 MHz <sup>1</sup>H NMR spectra. Complete separation was achieved with the corresponding *N*-benzoyl derivative. [g] Optical rotation of the corresponding *N*-benzoyl derivative.

#### > Kawabata, T.; Suzuki, H.; Nagae, Y; Fuji, K. Angew. Chem. Int. Ed. 2000, 39, 2155.



<sup>b</sup> UNIVERSITÄT BERN




> Kawabata, T.; Suzuki, H.; Nagae, Y; Fuji, K. Angew. Chem. Int. Ed. 2000, 39, 2155.



b UNIVERSITÄT BERN

b



<sup>a</sup> Ee was determined by HPLC analysis with a chiral stationary phase. <sup>b</sup> (S)-Isomer.

<sup>c</sup>% Ee of the corresponding product from 1.

> Kawabata, T.; Kawakami, S.; Fuji, K. *Tetrahedron Lett.* **2002**, *43*, 1465.

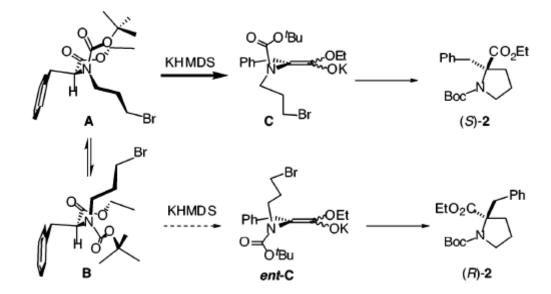


| Ph CO <sub>2</sub> Et | a-c     | Ph     | CO <sub>2</sub> Et | Table 1 | Ph CO <sub>2</sub> Et |
|-----------------------|---------|--------|--------------------|---------|-----------------------|
| NH <sub>3</sub> CI    |         | Boc-N  | Br                 |         | Boc N                 |
| (a) 2 bromo 1 r       | ropopol | K CO I |                    |         | 2                     |

(a) 3-bromo-1-propanol,  $K_2CO_3$ , DMF, (b) (Boc)<sub>2</sub>O, *i*-Pr<sub>2</sub>NEt, (c) CBr<sub>4</sub>, PPh<sub>3</sub> (63% overall)

| entry | base <sup>a</sup>  | solvent | temp, time     | 2, yield (%) | 2 <sup>b</sup> , ee <sup>c</sup> (%) |
|-------|--------------------|---------|----------------|--------------|--------------------------------------|
| 1     | KHMDS <sup>d</sup> | THF     | −78 °C, 30 min | 92           | 89                                   |
| 2     | KHMDS <sup>d</sup> | toluene | −78 °C, 2 h    | 92           | 47                                   |
| 3     | KHMDS <sup>d</sup> | DMF     | −60 °C, 30 min | 94           | 98                                   |
| 4     | LHMDS <sup>e</sup> | DMF     | −60 °C, 30 min | 60           | 77                                   |
| 5     | LTMP               | DMF     | -60 °C, 30 min | $\sim 0$     |                                      |

<sup>*a*</sup> 1.2 equiv of base was used. <sup>*b*</sup> The (S)-isomer was obtained in every entry. See the Supporting Information. <sup>*c*</sup> Determined by HPLC analysis. <sup>*d*</sup> Potassium hexamethyldisilazide. <sup>*e*</sup> Lithium hexamethyldisilazide. <sup>*f*</sup> Lithium 2,2,6,6-tetramethylpiperidide.

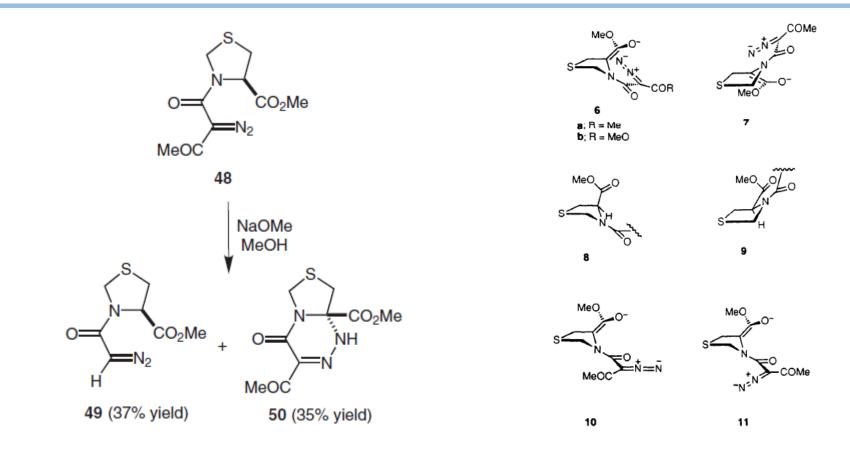

| I              | Boc N (CI       | ₂Et<br>H₂)n <sup>−I</sup> | KHMDS<br>DMF<br>Br _60 °C, 30 mi                     | Dee     |                 | 1 <sub>2</sub> ) <sub>n</sub> |
|----------------|-----------------|---------------------------|------------------------------------------------------|---------|-----------------|-------------------------------|
| entry          | substrate       | п                         | R                                                    | product | yield (%)       | ee (%) <sup>b</sup>           |
| 1              | 1 <sup>c</sup>  | 3                         | PhCH <sub>2</sub>                                    | 2       | 94              | 98 (S)                        |
| 2              | 3               | 3                         | 4-EtO-C <sub>6</sub> H <sub>4</sub> -CH <sub>2</sub> | 4       | 95              | 97                            |
| 3              | 5               | 3                         | MeSCH <sub>2</sub> CH <sub>2</sub>                   | 6       | 92              | 97                            |
| 4              | 7               | 3                         | Me <sub>2</sub> CH                                   | 8       | 78              | 94                            |
| 5              | 9               | 3                         | CH <sub>3</sub>                                      | 10      | 91              | 95 (R)                        |
| 6              | 11              | 2                         | PhCH <sub>2</sub>                                    | 12      | 61              | 95                            |
| 7              | 13 <sup>c</sup> | 4                         | PhCH <sub>2</sub>                                    | 14      | 84              | 97                            |
| 8              | 15 <sup>c</sup> | 5                         | PhCH <sub>2</sub>                                    | 16      | 31 <sup>e</sup> | 83 (S)                        |
| 9 <sup>d</sup> | 15 <sup>c</sup> | 5                         | PhCH <sub>2</sub>                                    | 16      | 61 <sup>f</sup> | 72 (S)                        |

<sup>*a*</sup> A solution of substrate (0.25 mmol) in dry DMF (2.4 mL) was treated with 1.2 mol equiv of KHMDS (0.50 M in THF) for 30 min at -60 °C, unless otherwise mentioned. <sup>*b*</sup> The ee was determined by HPLC analysis. The letter in the parentheses indicates the absolute configuration. See the Supporting Information. <sup>*c*</sup> >99% ee. <sup>*d*</sup> The reaction was run for 2 h. <sup>*e*</sup> 15 (70% ee) was recovered in 52% yield. <sup>*f*</sup> 15 (54% ee) was recovered in 17% yield.

> Kawabata, T.; Kawakami, S.; Majumdar, S. J. Am. Chem. Soc. 2003, 125, 13012.



b UNIVERSITÄT BERN

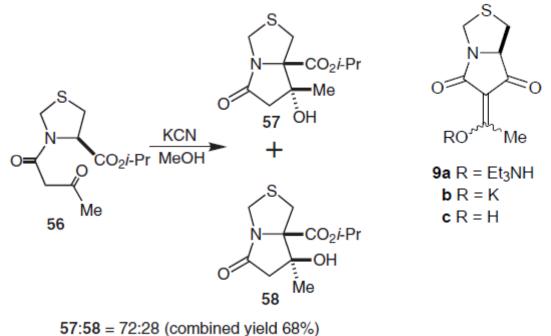



> Kawabata, T.; Kawakami, S.; Majumdar, S. *J. Am. Chem. Soc.* **2003**, *125*, 13012.

# $u^{\flat}$

### Memory of chirality in enolate chemistry

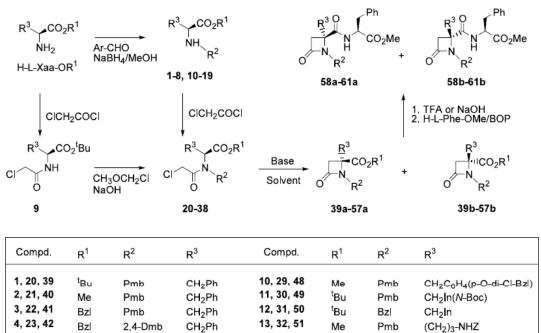
<sup>D</sup> UNIVERSITÄT BERN




- > Zhao, H.; Hsu, D. C.; Carlier, P.R. Synthesis **2005**, *1*, 1.
- > Vohra, S. et al. J. Chem. Soc. Perkin Trans. 1 1993, 1761.



b UNIVERSITÄT BERN


b



- > Zhao, H.; Hsu, D. C.; Carlier, P.R. Synthesis **2005**, *1*, 1.
- > Vohra, S. et al. *Chem. Commun.* **1998**, 299.



<sup>b</sup> Universität Bern



|  | 5, 24, 43<br>6, 25, 44<br>7, 26, 45<br>8, 27, 46<br>9, 28, 47 | Me<br>Bzl<br>Me<br><sup>t</sup> Bu<br><sup>t</sup> Bu | 2,3,4–Tmb<br>2,4,6–Tmb<br>3,4,5–Tmb<br>Nph<br>Mom | $CH_2Ph$<br>$CH_2Ph$<br>$CH_2Ph$<br>$CH_2Ph$<br>$CH_2Ph$ | 14, 33, 52<br>15, 34, 53, 58<br>16, 35, 54,59<br>17, 36, 55, 60<br>18, 37, 56, 60<br>19, 38, 57, 61 | Me<br>Me<br>Me<br><sup>t</sup> Bu<br><sup>t</sup> Bu | Pmb<br>Pmb<br>Pmb<br>Pmb<br>Bzl | $\begin{array}{l} ({\rm CH}_2)_4\text{-}{\rm NHZ} \\ {\rm CH}_2{\rm CO}_2^{\dagger}{\rm Bu} \\ ({\rm CH}_2)_2{\rm CO}_2^{\dagger}{\rm Bu} \\ {\rm CH}_2{\rm CH}({\rm CH}_3)_2 \\ {\rm CH}_2{\rm CH}({\rm CH}_3)_2 \\ {\rm CH}_3 \end{array}$ |  |
|--|---------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--|---------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

> Bonache, M<sup>a</sup>, A. Et al. *Tetrahedron Asymmetry* **2003**, *14*, 2161.



<sup>b</sup> UNIVERSITÄT BERN

| Entry | Starting compd | $\mathbb{R}^1$ | Base                            | Solvent | Final compd | Yield (%) <sup>a</sup> | a:b <sup>b</sup>   | e.e.            |
|-------|----------------|----------------|---------------------------------|---------|-------------|------------------------|--------------------|-----------------|
| 1     | 20             | 'Bu            | Cs <sub>2</sub> CO <sub>3</sub> | MeCN    | 39          | 71                     | 78:22°             | 56              |
| 2     | 21             | Me             | Cs <sub>2</sub> CO <sub>3</sub> | MeCN    | 40          | 74                     | 78:22 <sup>d</sup> | 56              |
| 3     | 22             | Bzl            | Cs <sub>2</sub> CO <sub>3</sub> | MeCN    | 41          | 75                     | 79:21°             | 58              |
| 4     | 20             | 'Bu            | BTPP                            | MeCN    | 39          | 73                     | 76:24 <sup>c</sup> | 52              |
| 5     | 21             | Me             | BTPP                            | MeCN    | 40          | 68                     | 67:33 <sup>d</sup> | 34              |
| 6     | 22             | Bzl            | BTPP                            | MeCN    | 41          | 58                     | 57:43°             | 14              |
| 7     | 20             | 'Bu            | BEMP                            | MeCN    | 39          | 81                     | 76:24 <sup>c</sup> | 52              |
| 8     | 20             | 'Bu            | BTPP                            | DCM     | 39          | 58                     | 74:26 <sup>c</sup> | 48              |
| 9     | 21             | Me             | BTPP                            | DCM     | 40          | 65                     | 67:33 <sup>d</sup> | 34              |
| 10    | 20             | 'Bu            | BEMP                            | DCM     | 39          | 65                     | 75:25°             | 50              |
| 11    | 21             | Me             | BEMP                            | DCM     | 40          | 68                     | 68:32 <sup>d</sup> | 36              |
| 12    | 20             | 'Bu            | BTPP                            | NMP     | 39          | 56                     | 43:57°             | 14 <sup>f</sup> |
| 13    | 21             | Me             | BTPP                            | NMP     | 40          | 79                     | 34:66 <sup>d</sup> | 32 <sup>f</sup> |
| 14    | 20             | 'Bu            | BEMP                            | NMP     | 39          | 52                     | 51:49°             | 2               |
| 15    | 21             | Me             | BEMP                            | NMP     | 40          | 81                     | 43:57 <sup>d</sup> | 14 <sup>f</sup> |

Table 1. Influence of the  $R^1$  group on the selectivity of the cyclization of L-Phe derivatives.

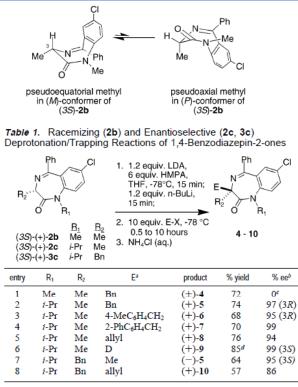
<sup>a</sup> Isolated yield.

<sup>b</sup> Measured by chiral HPLC (Column: OL-389).

<sup>c</sup> Hexane/acetone (96:4), 1.5 ml/min.

<sup>d</sup> Hexane/EtOH (95:5), 1 ml/min.

e OL-321, hexane/EtOH (97:3), 1 ml/min.


<sup>f</sup> Major isomer has *R* configuration.

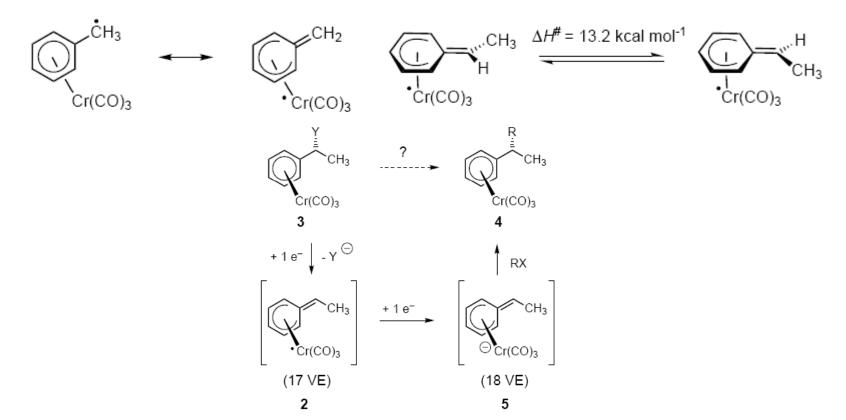
> Bonache, M<sup>a</sup>, A. et al. *Tetrahedron Asymmetry* **2003**, *14*, 2161.



b UNIVERSITÄT BERN

b




<sup>*a*</sup> Electrophiles used: BnBr, 4-MeC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Br, 2-PhC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Br, allyl bromide, D-OTFA, MeI. <sup>*b*</sup> % ee measured by chiral stationary phase HPLC (Chiralcel OD, AD). <sup>*c*</sup> Racemic 4 is also obtained if BnBr is added only 10 s after deprotonation by LDA. <sup>*d*</sup> The extent of deuteration is 96%.

> Carlier, P. R. et al. JACS 2003, 125, 11482.



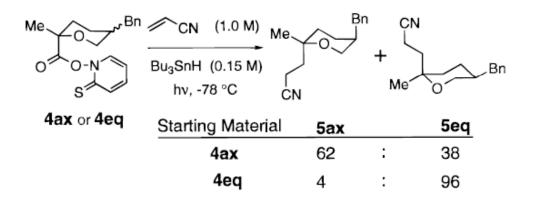
UNIVERSITÄT BERN

### Memory of chirality in complex chemistry



Schmalz, H.-G.; Koning, C.B.S.; Bernicke, D.; Siegel, S.; Pfletschinger, A. Angew. Chem. Int. Ed. 1999, 38, 1620.

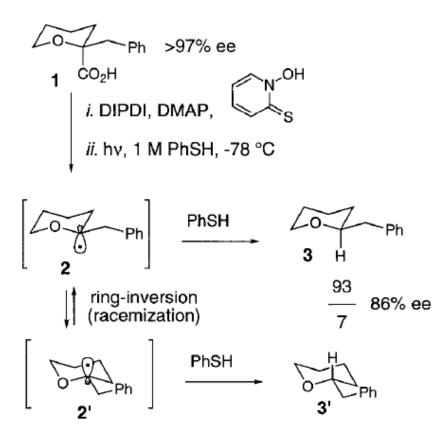



<sup>b</sup> UNIVERSITÄT BERN

|       | O Bn 1. R<br>1. R<br>2. (I | DDQ) Me Contraction H       | H<br>Me O Bn                          |
|-------|----------------------------|-----------------------------|---------------------------------------|
| 1:    | ax or 1eq                  | 3ax                         | 3eq                                   |
| entry | substrate                  | conditions <sup>a</sup>     | ratio ( <b>3ax:3eq</b> ) <sup>b</sup> |
| 1     | 1ax                        | Li/NH <sub>3</sub> (-78 °C) | 66:34                                 |
| 2     | 1eq                        | Li/NH <sub>3</sub> (-78 °C) | 4:96                                  |
| 3     | 1ax                        | LiDBB (-78 °C)              | 66:34                                 |
| 4     | 1eq                        | LiDBB (-78 °C)              | 5:95                                  |
| 5     | 1ax                        | Li/NH <sub>3</sub> (-33 °C) | 39:61                                 |
| 6     | 1eq                        | Li/NH <sub>3</sub> (-33 °C) | 5:95                                  |
| 7     | 1ax                        | LiDBB (-95 °C)              | 71:29                                 |

> Buckmelter, A.J.; Powers, J.P.; Rychnovsky, S.D. J. Am. Chem. Soc. 1998, 120, 5589




b UNIVERSITÄT BERN



> Buckmelter, A.J.; Powers, J.P.; Rychnovsky, S.D. J. Am. Chem. Soc. 1998, 120, 5589



b UNIVERSITÄT BERN



> Buckmelter, A.J.; Kim, A.I.; Rychnovsky, S.D. J. Am. Chem. Soc. 2000, 122, 9386

<sup>b</sup> UNIVERSITÄT BERN

b

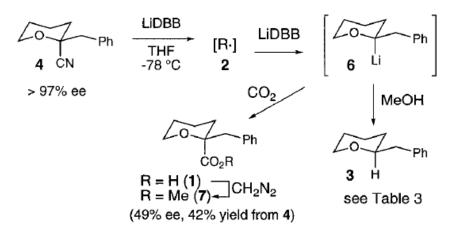
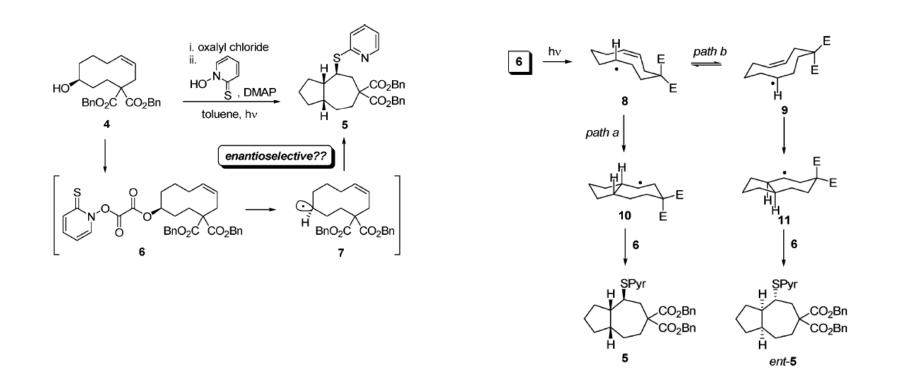



Table 3. Reductive Decyanations of 4 with LiDBB in THF


| conditions <sup>a</sup>  | optical purity of 3 |
|--------------------------|---------------------|
| 0.12 M LiDBB, -78 °C     | 26% ee              |
| 0.31 M LiDBB, −78 °C     | 30% ee              |
| 0.47 M LiDBB, −78 °C     | 39% ee              |
| 0.63 M LiDBB, −78 °C     | 40% ee              |
| Inverse addition, −78 °C | 9% ee               |

<sup>a</sup> The nitrile in THF was added to the solution of Li in NH<sub>3</sub> unless otherwise noted.

> Buckmelter, A.J.; Kim, A.I.; Rychnovsky, S.D. J. Am. Chem. Soc. 2000, 122, 9386



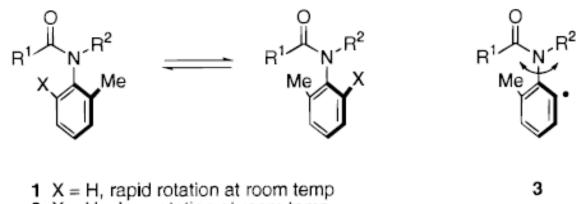
<sup>b</sup> UNIVERSITÄT BERN

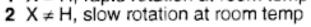


#### > Dalgard, J.E.; Rychnovsky, S.D. *Org. Lett.* **2004**, *6*, 2713



<sup>b</sup> Universität Bern

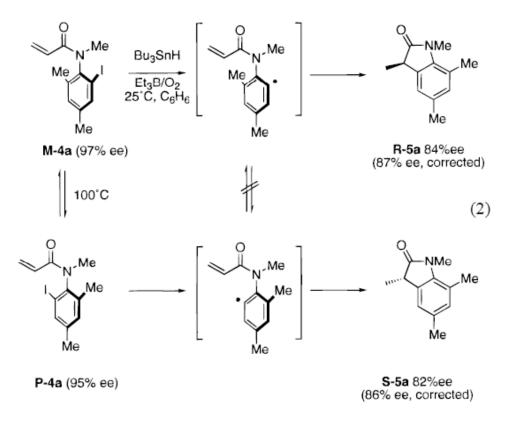

| HO<br>BnO <sub>2</sub> C<br>4<br>94:6 er |           |           | CO <sub>2</sub> Bn<br>CO <sub>2</sub> Bn |
|------------------------------------------|-----------|-----------|------------------------------------------|
| entry <sup>a</sup>                       | temp (°C) | yield (%) | $er^b$                                   |
| 1                                        | 23        | 88        | 63:37                                    |
| 2                                        | 0         | 67        | 79:21                                    |
| 3                                        | -15       | 51        | 84:16                                    |
| 4                                        | -35       | 43        | 84:16                                    |


<sup>a</sup> Reaction mixtures were photolyzed with a 500-W tungsten lamp. <sup>b</sup> Enantiomeric ratio determined by chiral HPLC analysis (Diacel OD-H column), 90:10 hexanes/IPA, 0.9 mL/min.

> Dalgard, J.E.; Rychnovsky, S.D. Org. Lett. 2004, 6, 2713



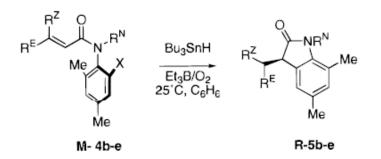
<sup>b</sup> UNIVERSITÄT BERN






> Curran, D.P.; Liu, W.; Chen, C.H.-T. J. Am. Soc. **1999**, *121*, 11012.




<sup>b</sup> UNIVERSITÄT BERN

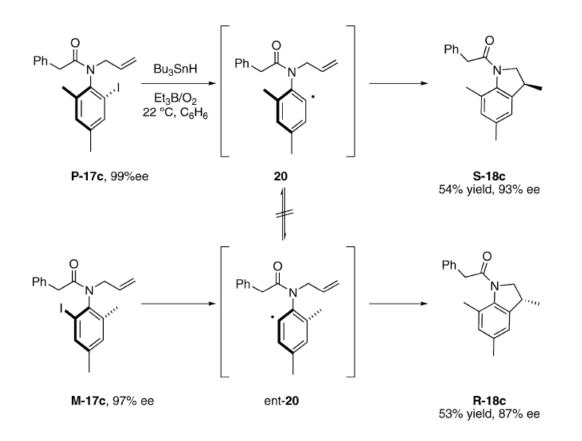


> Curran, D.P.; Liu, W.; Chen, C.H.-T. J. Am. Soc. **1999**, *121*, 11012.



b UNIVERSITÄT BERN




| entry | precursor | $\mathbb{R}^{\mathbb{N}}$ | $\mathbb{R}^{\mathbb{E}}$ | $\mathbb{R}^{\mathbb{Z}}$ | Х  | product | yield,ª % | ee, <sup>b</sup> % |
|-------|-----------|---------------------------|---------------------------|---------------------------|----|---------|-----------|--------------------|
| 1     | M-4b-I    | Me                        | Me                        | Η                         | Ι  | R-5b    | 73        | 89                 |
| 2     | P-4b-I    | Me                        | Me                        | Η                         | Ι  | S-5b    | 70        | 85                 |
| 3     | M-4b-Br   | Me                        | Me                        | Η                         | Br | R-5b    | 60        | 92                 |
| 4     | P-4b-Br   | Me                        | Me                        | Η                         | Br | S-5b    | 60        | 87                 |
| 5     | M-4c      | Me                        | $\mathbf{Ph}$             | Η                         | Ι  | R-5c    | 75        | 94                 |
| 6     | P-4c      | Me                        | $\mathbf{Ph}$             | Η                         | Ι  | S-5c    | 73        | 92                 |
| 7     | M-4d      | Me                        | Me                        | Me                        | Ι  | R-5d    | 91        | 49                 |
| 8     | P-4d      | Me                        | Me                        | Me                        | Ι  | S-5d    | 88        | 50                 |
| 9     | M-4e      | Et                        | Me                        | Η                         | Ι  | R-5e    | 93        | 90                 |
| 10    | P-4e      | Et                        | Me                        | Η                         | Ι  | S-5e    | 86        | 90                 |

<sup>a</sup> Determined by NMR against an internal standard. <sup>b</sup> Corrected for ee of 4, which was 95–98%.

> Curran, D.P.; Liu, W.; Chen, C.H.-T. J. Am. Soc. **1999**, *121*, 11012.



b UNIVERSITÄT BERN



> Curran, D.P.; Chen, C.H.-T.; Geib, S.J.; Lapierre, A.J.B. *Tetrahedron* **1999**, *60*, 4413.

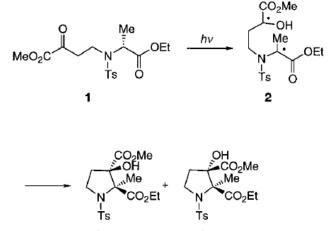


UNIVERSITÄT BERN

|       | $Ar \xrightarrow{n}_{N} \xrightarrow{R^{Z}}_{Hr} \xrightarrow{Bu_{3}SnH} \xrightarrow{Ar} \xrightarrow{n}_{N} \xrightarrow{N}_{Hr}$ $Me \xrightarrow{Et_{3}B/O_{2}}_{25 \text{ °C}, C_{6}H_{6}} \xrightarrow{Me} \xrightarrow{Me}$ $M-17a-g \qquad R-18a-g$ |                                   |   |                  |                  |         | RE<br>RE           | R <sup>E</sup>      |                   |                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---|------------------|------------------|---------|--------------------|---------------------|-------------------|-------------------------|
| Entry | Precursor <sup>a</sup>                                                                                                                                                                                                                                      | Ar                                | n | $\mathbb{R}^{Z}$ | $\mathbf{R}^{E}$ | Product | Yield <sup>b</sup> | %ee <sub>SM</sub> ° | %eep <sup>d</sup> | Chirality transfere (%) |
| 1     | P-17a                                                                                                                                                                                                                                                       | Ph                                | 0 | Н                | Н                | S-18a   | 95                 | 99                  | 86                | 93                      |
| 2     | M-17a                                                                                                                                                                                                                                                       | Ph                                | 0 | Н                | Н                | R-18a   | 92                 | > 99                | 87                | 93                      |
| 3     | P-17b                                                                                                                                                                                                                                                       | 4-BrC <sub>6</sub> H <sub>4</sub> | 0 | Me               | Me               | S-18b   | 72                 | 99                  | 48                | 72                      |
| 4     | M-17b                                                                                                                                                                                                                                                       | $4-BrC_6H_4$                      | 0 | Me               | Me               | R-18b   | 95                 | 98                  | 47                | 72                      |
| 5     | P-17c                                                                                                                                                                                                                                                       | Ph                                | 1 | Н                | Н                | S-18c   | 54                 | >99                 | 93                | 97                      |
| 6     | M-17c                                                                                                                                                                                                                                                       | Ph                                | 1 | Н                | Н                | R-18c   | 53                 | 97                  | 87                | 95                      |
| 7     | P-17d                                                                                                                                                                                                                                                       | Ph                                | 1 | Н                | Ph               | S-18d   | 40                 | >99                 | 74                | 87                      |
| 8     | M-17d                                                                                                                                                                                                                                                       | Ph                                | 1 | Н                | Ph               | R-18d   | 50                 | 98                  | 76                | 88                      |
| 9     | P-17e                                                                                                                                                                                                                                                       | Ph                                | 1 | Н                | Me               | S-18e   | 77                 | >99                 | 79                | 89                      |
| 10    | M-17e                                                                                                                                                                                                                                                       | Ph                                | 1 | Н                | Me               | R-18e   | 71                 | >99                 | 83                | 91                      |
| 11    | P-17f                                                                                                                                                                                                                                                       | Ph                                | 1 | Me               | Me               | S-18f   | 79                 | >99                 | 63                | 81                      |
| 12    | M-17f                                                                                                                                                                                                                                                       | Ph                                | 1 | Me               | Me               | R-18f   | 81                 | >99                 | 57                | 78                      |
| 13    | P-17g                                                                                                                                                                                                                                                       | Ph                                | 2 | Н                | Н                | S-18g   | 67                 | 96                  | 85                | 94                      |
| 14    | M-17g                                                                                                                                                                                                                                                       | Ph                                | 2 | Н                | Н                | R-18g   | 74                 | > 99                | 90                | 95                      |

<sup>a</sup> The P configuration is assigned to the dextrorotatory enantiomers and M to levorotatory. <sup>b</sup> Isolated yield after chromatography.

<sup>c</sup> ee of precursor.


<sup>d</sup> ee of product 18.

<sup>e</sup> Yield (not excess) of the major enantiomer of 18 expected from an enantiopure sample of 17.

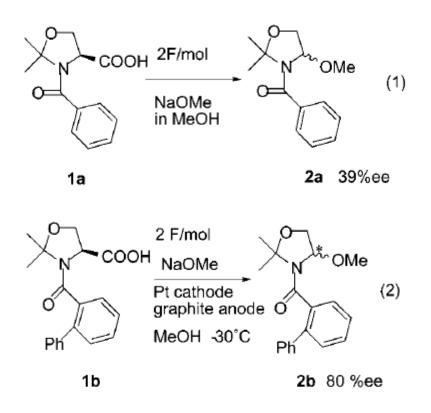
Curran, D.P.; Chen, C.H.-T.; Geib, S.J.; Lapierre, A.J.B. Tetrahedron 1999, 60, 4413. >



#### <sup>b</sup> UNIVERSITÄT BERN



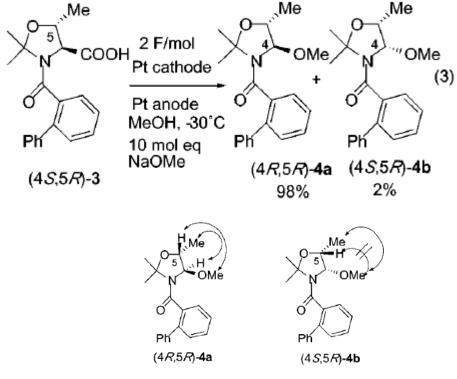
| Conditions                      | 3:ent-3 | <b>4</b> :ent- <b>4</b> | cis:trans | Overall<br>yield [%] <sup>[a]</sup> |
|---------------------------------|---------|-------------------------|-----------|-------------------------------------|
| hv/naphthalene (1M)             | 24      | 16                      | 5.7       | 47 <sup>[b]</sup>                   |
| hv/naphthalene (0.5 M)          | 18      | 13                      | 5.3       | 50 <sup>[b]</sup>                   |
| hv/isoprene (0.5 M)             | 9.4     | 3.0                     | 2.9       | 47 <sup>[b]</sup>                   |
| hv/O <sub>2</sub>               | 9.6     | 3.6                     | 2.6       | 48 <sup>[c]</sup>                   |
| hv/Ar                           | 2.4     | 1.6                     | 0.9       | 35[c]                               |
| <i>hv</i> /benzophenone (1M)/Ar | 1.4     | 1.4                     | 0.8       | 10 <sup>[d]</sup>                   |

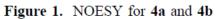

[a] Based on the conversion (80-90%). [b] Irradiation time 10 h.[c] Irradiation time 2 h. [d] Irradiation time 20 min.

> Giese, B. et al. Angew. Chem. Int. Ed. **1999**, 38, 2586.

# Memory of chirality involving carbocation intermediates

<sup>b</sup> UNIVERSITÄT BERN

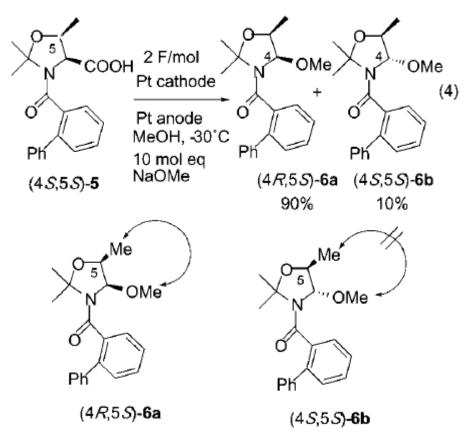

b




### Memory of chirality involving carbocation intermediates

<sup>b</sup> UNIVERSITÄT BERN

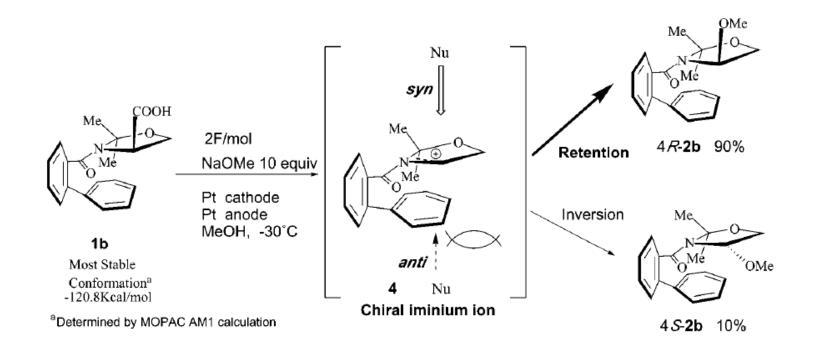
b






# Memory of chirality involving carbocation intermediates

<sup>b</sup> Universität Bern


b





b UNIVERSITÄT BERN

b



### Conclusion

- > Memory of chirality is an emerging strategy for enantioselective synthesis
- To date, most MOC experiments were carried out in enolate chemistry, but MOC is also performed in radical chemistry and with involvement of carbocations as reactive intermediates.
- > Three conditions have to be fulfilled for MOC:
- > The chiral starting material must be transformed in a conformationally chiral intermediate
- > The intermediate must not racemize during the timescale of the reaction
- > The reaction from the reactive intermediate has to work with a high ee.