Nicholas Tappin Renaud Group Universität Bern Topic Review January 28th 2016

UNIVERSITÄT Bern

Intramolecular Cyclopropanations

A quick note on bonding

"Ring strain confers exceptional reactivity to the cyclopropane ring." *Chimia*, **2009**, *63*, 162-167. And many publications from a synthetic organic chemists concerning the synthesis and reactivity of cyclopropanes has a similar phrase!

How do you explain the following observation?

c.f. C--C bond dissociation energy is ~83-85 kcal mol-1

Ring strain might provide a strong thermodynamic driving force for reaction but is doesn't explain the *reactivity*. A suitable answer must therefore invoke bonding. Problem: tightest angle between any AOs is 90° (e.g. orthogonal p-orbitals) but in cyclopropane we have to accomodate a bond angle of 60°

Pauling τ -bond treatment

22° and ~20% less effective overlap

Coulson-Moffit orbitals: sp³-hybridized C AOs orbitals Hückel σ/π -bond treatment

Walsh orbitals: sp²-hybridized C AOs

N.B.: This model is generally accepted (as is Hückel's approach to bonding) **but** it is likely wrong as it may not represent the ground state: Specifically, relative energies of $\Psi(A2')$ with $\Psi(E',a)$ and $\Psi(E',b)$ are switched when valence AOs are used as the basis set instead of methylene and choosing methylene as basis set removes C–H bonds from MO picture See [Wiberg, K. B. *Acc. Chem. Res.* **1996**, *29*, 229–234] and [reference 17 therein]. Walsh orbitals work in other cases outside of cyclopropane.

"the overall distribution of electrons [...] is exactly the same" [in the two models]. – Ian Fleming At least theoretically and mathematically, and assuming that the basis sets are valid (interconvertible).

An excellent resource for Walsh's theory using methylene as basis set: <u>http://www.bluffton.edu/~bergerd/chem/walsh/derive.html</u>, and references therein for the full story.

Banana Bond

X-ray diffraction of *cis*-1,2,3-tricyanocyclopropane: Hartman, A.; Hirshfeld, F. L. *Acta Crystallographica* **1966**, *20* (1), 80–82.

Fig. 2. Difference density in plane of cyclopropane ring. Contour interval 0.01 e.Å⁻³, zero contour broken. Estimated standard deviation averages 0.017 e.Å⁻³.

Cyclopropane Electron cloud

Classifications in a Venn diagram

Classifications in a Venn diagram

Examples from free carbene chemistry

Intermolecular cyclopropanation example (no intermediate)

Examples from free carbene chemistry

Intermolecular cyclopropanation example (via an intermediate)

Examples from free carbene chemistry

Intramolecular cyclopropanation example

Ambiguous examples from free carbene chemistry and another, unambiguous (?), example

Intramolecular cyclopropanation example via an isolable first product arrived at from an intermolecular process

$$S_1 + S_2 \longrightarrow P_1 \longrightarrow P_2$$

Intramolecular cyclopropanation: 1,3-cyclization

cyclopropane cyclization occurs with formation of 1 C–C σ -bond

Intramolecular cyclopropanation: [2+1] and insertion reactions

cyclopropane cyclization occurs with formation of 2 C-C σ-bonds (except insertion reactions)

or involving recombination of respective radical-ion species

Cyclopropane formation from reactions to cyclopropene (without cyclopropane cyclization)

will not be covered in this topic review

For some information, however, on this topic see: Kulinkovich, O. G. *Cyclopropanes in organic synthesis*. (Hoboken, New Jersey: Wiley, 2015), 88-90.

1,3-cyclizations by breaking 2 σ -bonds

cyclopropane cyclization occurs with formation of 1 C–C $\sigma\text{-bond}$

1,3-dehalogenation: dissolving metal

Salaun, J. R.; Champion, J.; Conia, J. M. Org. Synth. 1977, 57, 36.

1,3-dehalogenation: dissolving metal

ruthenium-catalyzed Kharash ATRA/1,3-dehalogenation 1-pot sequence

Risse, J.; Fernández-Zúmel, M. A.; Cudré, Y. Org. Lett. 2012, 14, 3060–3063.

elimination of HX

Cannon, G. W.; Ellis, R. C.; Leal, J. R. Org. Synth. 1951, 31, 74.

Double Tsuji-Trost by palladium-catalyzed allylation and palladium-catalyzed cyclopropanation

- Tsuji-Trost type mechanism for first allylation and then second, except when no palladium used. For origin of this discovery: Colobert, F.; Genet, J.- P. *Tetrahedron Lett.* **1985**, *26*, 2779–2782 and reference [6] therein.

'Regio-incorrect Tsuji-Trost' leads to isolable palladocyclobutane

- Need appropriate enolate ester: Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org. Chem. 1980, 45, 5193–5196.

- Although Hückel calculations suggested attack at central carbon in π -allyl complex would be unfeasible [Curtis, M. D.; Eisenstein, O. *Organometallics* **1984**, *3*, 887–895], here it does occur.

- Nuc attack on η³-allyl palladium complexes is explored further: Aranyos, A.; Szabó, K. J.; Castaño, A. M.; Bäckvall, J.-E. *Organometallics* **1997**, *16*, 1058–1064.

Hegedus, L. S.; Söderberg, B. C. G. *Transition metals in the synthesis of complex organic molecules, 3rd Ed.* (Sausalito, California: University Science Books, 2010), 28-29.

elimination of HX: enantioselective

Enantioselective (here with proline enamine organocatalysis)

N.B.: - this was only example for cyclopropane, others were for cyclopentanes - long reaction times, higher catalyst loading (c.f. 24 h with 10 mol%)

Vignola, N.; List, B. J. Am. Chem. Soc. 2004, 126, 450-451.

γ-chloropropylborane-ate complex

Discovery: Hawthorne, M. F.; Dupont, J. A. J. Am. Chem. Soc. 1958, 80, 5830–5832.

Hawthorne, M. F. J. Am. Chem. Soc. 1960, 82, 1886–1888.

Problem: allylchloride powerfully directive (overides inherent selectivity of borane during hydroboration)

γ-chloropropylborane-ate complex

Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91 (8), 2149-2150.

1,3-cyclizations by breaking 1 σ -bond and 1 π -bond

Diastereoselective with chiral aux

Inoue, T.; Kitagawa, O.; Ochiai, O.; Taguchi, T. *Tetrahedron: Asymmetry* **1995**, *6*, 691–692. Chiral titanium complex failed to induce enantioselectivity: Kitagawa, O.; Taguchi, T. *Synlett* **1999**, 1191–1199.

1,3-cyclizations by breaking 2 π **-bonds**

Photolysis of double bonds

Hasegawa, E.; Katagi, H.; Nakagawa, D.; Horaguchi, T. Tetrahedron Lett. 1995, 36, 6915.

Wilzbach, K. E.; Kaplan, L. J. Am. Chem. Soc. 1966, 88, 2066–2067.

Intramolecular cyclopropanation: [2+1] and insertion reactions

cyclopropane cyclization occurs with formation of 2 C-C σ-bonds (except insertion reactions)

or involving recombination of respective radical-ion species

1,1-carbodication and 1,2-carbodianion

Kulinkovich-de Meijere hydroxycyclopropanation: intermolecular version and mechanism

(a) For a review: Kulinkovich, O. G.; de Meijere, A. *Chem. Rev.* **2000**, *100*, 2789–2834. (b) For an important application to total synthesis: Kingsbury, J. S.; Corey, E. J. J. Am. Chem. Soc. **2005**, *127*, 13813–13815. (c) Hegedus, L. S.; Söderberg, B. C. G. *Transition metals in the synthesis of complex organic molecules*, *3rd Ed.* (Sausalito, California: University Science Books, 2010), 142-143.

Kulinkovich-de Meijere reaction: intramolecular version and intelligent modification

A variation allows exhange of alkene component by exploiting the reversibility of the titanacyclopropane formation to increase substitution on the resulting cyclopropane. This also can open posibilities for intramolecular cyclopropanation: Lee, J.; Kim, H.; Cha, J. K. *J. Am. Chem. Soc.* **1996**, *118*, 4198–4199.

The exchange may be encouraged by choice of Grignard reagent:

Analogously, intramolecular reaction of enamides to cyclopropylamines

Lee, J.; Cha, J. K. J. Org. Chem. 1997, 62, 1584-1585.

Kulinkovich-de Meijere reaction: intramolecular version and intelligent modification

See also: Kasatkin, A.; Sato, F. Tetrahedron Lett. 1995, 36, 6079-6082.

carbene [2+1] reactions (and 2 insertion examples)

Electrophilic group 6 Fischer carbenes

Söderberg, B. C.; Hegedus, L. S. Organometallics 1990, 9, 3113–3121.

Semmelhack, M. F.; Bozell, J. J. Tetrahedron Lett. 1982, 23, 2931–2934.

Hegedus, L. S.; Söderberg, B. C. G. *Transition metals in the synthesis of complex organic molecules,* 3rd Ed. (Sausalito, California: University Science Books, 2010), 196-199. See also 183-187 for background information on these complexes. ³⁴

Electrophilic group 6 Fischer carbenes

mechanism

35

Electrophilic group 6 Fischer carbenes

Diastereoselectivity from a leaving chiral auxilary. When alkene tethered in proximity may have metathesis.

Barluenga, J.; Diéguez, A.; Rodríguez, F.; Flórez, J.; Fañanás, F. J. J. Am. Chem. Soc. 2002, 124, 9056–9057.

Barluenga, J.; Aznar, F.; Gutiérrez, I.; Martín, J. A. Org. Lett. 2002, 4, 2719–2722.
Electrophilic group 6 Fischer carbenes

not a cyclopropanation rxn, but via a cyclopropane intermediate

Barluenga, J.; Aznar, F.; Gutiérrez, I.; Martín, J. A. Org. Lett. 2002, 4, 2719-2722.

Electrophilic group 6 Fischer carbenes

Harvey, D. F.; Lund, K. P. *J. Am. Chem. Soc.* **1991**, *113*, 5066–5068; Harvey, D. F.; Brown, M. F. *J. Org. Chem.* **1992**, *57*, 5559–5561. For examples with ene-yne, i.e. not diene where there is no Cope rearrangement: Harvey, D. F.; Lund, K. P.; Neil, D. A. *J. Am. Chem. Soc.* **1992**, *114*, 8424–8434.

Evidence for Cu- and Rh-bound carbenes from catalytic decomposition of α -diazocarbonyl compounds

1) **metathesis**: highly efficient transformations that can be easily explained with metallacycobutane species and not by other types of carbenoid species

Padwa, A.; Austin, D. J.; Xu, S. L. *Tetrahedron Lett.* **1991**, *32*, 4103–4106; Hoye, T. R.; Dinsmore, C. J. *Tetrahedron Lett.* **1991**, 32, 3755–3758; Hoye, T. R.; Dinsmore, C. J. *J. Am. Chem. Soc.* **1991**, *113*, 4343–4345; Padwa, A.; Austin, D. J.; Xu, S. L. *J. Org. Chem.* **1992**, *57*, 1330–1331.

2) **enantioselectivity**: achiral substrates transformed into entioenriched products by catalytic quantities of enantiopure ligands and an appropriate metal

Doyle, M. P.; Dyatkin, A. B.; Roos, G. H. P.; Canas, F.; Pierson, D. A.; van Basten, A.; Mueller, P.; Polleux, P. *J. Am. Chem. Soc.* **1994**, *116*, 4507–4508.

therefore Cu- and Rh-catalyzed cyclopropanation likely to be via metallacyclobutanes arrived from metal-bound carbene complex, analagous to the group 6 Fischer carbenes

Rh- and Cu-carbenes with α -diazocarbonyl compounds: an evolution in complexity

Rh- and Cu-carbenes with α -diazocarbonyl compounds: not just addition to π -bond

C-H Insertion

C-C insertion

prostaglandins: diastereoselective (±)-8-epi-PGF_{2 α}

Improved synthesis of diazo-carbonyl compounds:

 R^1 , R^2 = alkyl, vinyl, aromatic, heteroaromatic; good to excellent yields

Srikrishna, A.; Vijaykumar, D. J. Chem. Soc., Perkin Trans. 1 2000, 2583–2589.

Uwamori, M.; Saito, A.; Nakada, M. J. Org. Chem. 2012, 77, 5098-5107.

poly-fused polycycles

Srikrishna, A.; Vijaykumar, D. J. Chem. Soc., Perkin Trans. 1 2000, 2583–2589.

enatioselective from simple achiral substrates

catalyst effects regioselectivity for polyenes

Rogers, D. H.; Yi, E. C.; Poulter, C. D. *J. Org. Chem.* **1995**, *60*, 941–945. Doyle, M. P.; Protopopova, M. N.; Poulter, C. D.; Rogers, D. H. *J. Am. Chem. Soc.* **1995**, *117*, 7281–7282. For a review of ligand effects: Padwa, A.; Austin, D. J. *Angew. Chem. Int. Ed.* **1994**, *33*, 1797–1815.

Hughes, C. C.; Kennedy-Smith, J. J.; Trauner, D. Org. Lett. 2003, 5, 4113–4115.

Frey, B.; Wells, A. P.; Rogers, D. H.; Mander, L. N. *J. Am. Chem. Soc.* **1998**, *120*, 1914–1915. An improved synthesis: Zhang, H.; Appels, D. C.; Hockless, D.; Mander, L. N. *Tetrahedron Lett.* **1998**, *39*, 6577–6580.

Au- and Pt-carbenes

Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez Núñez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. *Chem. Eur. J.* **2006**, *12*, 1694–1702.

Non-carbene [2+1] reactions

Organocatalyzed [2+1] additions

Bremeyer, N.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem. Int. Ed. 2004, 43, 2681–2684.

Organocatalyzed [2+1] additions

Scheme 1. Proposed catalytic cycle.

Organocatalyzed [2+1]-cyclization

Luo, C.; Wang, Z.; Huang, Y. Nat. Commun. 2015, 6, 10041.

Formally an enantioselective [2+1]-cyclization but really a 1,5- then 1,3-cyclization

Conclusions

Cycolpropanes exist as targets themselves or intermediates with interesting reactivity.

Logical breakdown of cyclopropanations into categories of synthons

- i. Make 1 C-C bond in cyclopropane i.e. 1,3-cylizations
 - i. Break 2 σ-bonds (Wurtz, eliminate HX, etc.)
 - ii. Break 1 σ -bond and 1 π -bond (add to carbonyl, alkene, etc.)
 - iii. Break 2 π -bonds (excite π -bond)
- ii. Make 2 C-C bonds in cycopropane
 - i. Carbene additions to π -bonds
 - ii. Carbene insertions in C-H or C-C bonds
 - iii. 1,1-dication or 1,1-dianion and respective partner

Carbene chemistry involoving α -diazocarbonyl compounds is a rich and fruitful field.

Thanks for your attention!

Reserve Slides

From cis-enolate

Reserve slide: assumption for planar rings

all internal angles 109.5°

ring size

Angles and Bonds

Conformation: ring strain

the puckered 'wing' conformation of cyclobutane

C-H bonds no longer fully eclipsed

Angular Strain and Gauche/ Eclipsing Strain Pfitzer and ... strain

How do you explain the following observation?

"Ring strain confers exceptional reactivity to the cyclopropane ring." De Simone, F; Waser, J. *Chimia*, **2009**, *63*, 162-167.

c.f. C–C bond dissociation energy is ~83-85 kcal mol⁻¹

Ring strain might provide a strong thermodynamic driving force for reaction but is doesn't explain the *reactivity*. A suitable answer must therefore invoke bonding. Problem: tightest angle between any AOs is 90° (e.g. orthogonal p-orbitals) but in cyclopropane we have to accomodate a bond angle of 60°

Pauling τ -bond treatment

22° and ~20% less effective overlap

Coulson-Moffit orbitals: sp³-hybridized C AOs orbitals Hückel σ/π -bond treatment

Walsh orbitals: sp²-hybridized C AOs

N.B.: This model is generally accepted (as is Hückel's approach to bonding) **but** it is likely wrong as it may not represent the ground state: Specifically, relative energies of $\Psi(A2')$ with $\Psi(E',a)$ and $\Psi(E',b)$ are switched when valence AOs are used as the basis set instead of methylene and choosing methylene as basis set removes C–H bonds from MO picture See [Wiberg, K. B. *Acc. Chem. Res.* **1996**, *29*, 229–234] and [reference 17 therein]. Walsh orbitals work in other cases outside of cyclopropane.

"the overall distribution of electrons [...] is exactly the same" [in the two models]. – Ian Fleming At least theoretically and mathematically, and assuming that the basis sets are valid (interconvertible).

An excellent resource for Walsh's theory using methylene as basis set: <u>http://www.bluffton.edu/~bergerd/chem/walsh/derive.html</u>, and references therein for the full story.

Applying Bent's rule

The H–C–H angle in cyclopropane is measured as 114 degrees. From this, and using Coulson's Theorem

 $1 + \sqrt{\lambda^2} \cos(114) = 0$

where λ represents the amount of p-character in the AOs directed along the C–H bond in cyclopropane and can be deduced to be sp^{2.46} hybridized. Now, using the equation

$$\frac{2}{1 + \lambda_{\rm C-H}} + \frac{2}{1 + \lambda_{\rm C-C}} = 1$$

(which says that summing the s-character over all AOs at a given carbon must be total to 1) we find that $\lambda_{c-c} = 3.74$ so that the re-hybridized AOs directed along the C–C bond are sp^{3.74} hybridized. We see that the C–C bonds in cyclopropane are very high in p-character (c.f. below for ethene). It is this high p-character that allows cyclopropane to behave in a similar fashion to an alkene in terms of stabilizing an adjacent charge or undergoing electrophilic substitution with bromine. Also tells us C–C–C interorbital angle of 105.5 degrees.

A similar treatment for ethene gives $sp^{2.20}$ for the AOs along the C–H bonds and $sp^{4.33}$ for along the C–C bonds (i.e. Pauling's 2 x τ -bonds as a point of comparison for cyclopropane). ((Or a single p-orbital and an $sp^{1.7}$ C–C directionalized " σ -bond" as in Hückel's treatment)).

http://chemistry.stackexchange.com/questions/10653/why-does-cyclopropane-give-bromine-water-test/ 10666#10666 And, https://en.wikipedia.org/wiki/Bent%27s_rule

Applying Bent's rule

HCH angle	Hybridization of C AOs along C–H bond axis	Hybridization of C AOs associated with C–C bond	interorbital angle
114° (measured)	sp ^{2.46}	sp ^{3.74}	105.5° (deduced)
approximated as 120°	sp ²	sp ⁵	102° (deduced)

N.B.: for sp^{3.74}-hybridized C atom AOs associated with the C–C bonds we have assumed that the C atom AOs associated with the C–H bonds are fixed/ directionalized exactly along this axis.

sp² (C–C) and sp⁵ (C–H) AOs have also been used with incorrect approximations, at least as incorrect as using sp²-hybridized AOs in ethene, but this model does contain some physical significance as it qualitatively explains cyclopropane deformation density.

Bonding by use of number crunching

6 H atoms and 4 C atoms gives 18 valence AOs, and 18 MOs. All occupied (18 electrons) MOs and LUMO are depicted below. Calculation from valence orbitals, BP86/cc-PVTZ, D_{3h}.
Bonding by use of number crunching

6 H atoms and 4 C atoms gives 18 valence AOs, and 18 MOs. All occupied (18 electrons) MOs and LUMO are depicted below. Calculation from valence orbitals, BP86/cc-PVTZ, D_{3h}.

Banana Bond

X-ray diffraction of *cis*-1,2,3-tricyanocyclopropane: Hartman, A.; Hirshfeld, F. L. *Acta Crystallographica* **1966**, *20* (1), 80–82.

Fig. 2. Difference density in plane of cyclopropane ring. Contour interval 0.01 e.Å⁻³, zero contour broken. Estimated standard deviation averages 0.017 e.Å⁻³.

Cyclopropane Electron cloud

Dewar, M. J. S. *J. Am. Chem. Soc.* **1984**, *106*, 669–682; Cremer, D.; Gauss, J. *J. Am. Chem. Soc.* **1986**, *108*, 7467–7477. For recent discrepancies of this theory: Carion, R.; Champagne, B.; Monaco, G.; Zanasi, R.; Pelloni, S.; Lazzeretti, P. *J. Chem. Theory Comput.* **2010**, *6*, 2002–2018; Pelloni, S.; Lazzeretti, P.; Zanasi, R. *J. Phys. Chem. A* **2007**, *111*, 8163–8169. Reviewed in: Wu, W.; Ma, B.; I-Chia Wu, J.; Schleyer, P. V. R.; Mo, Y. *Chem. Eur. J.* **2009**, *15*, 9730–9736. 75

Dewar, M. J. S. *J. Am. Chem. Soc.* **1984**, *106*, 669–682; Cremer, D.; Gauss, J. *J. Am. Chem. Soc.* **1986**, *108*, 7467–7477. For recent discrepancies of this theory: Carion, R.; Champagne, B.; Monaco, G.; Zanasi, R.; Pelloni, S.; Lazzeretti, P. *J. Chem. Theory Comput.* **2010**, *6*, 2002–2018; Pelloni, S.; Lazzeretti, P.; Zanasi, R. *J. Phys. Chem. A* **2007**, *111*, 8163–8169. Reviewed in: Wu, W.; Ma, B.; I-Chia Wu, J.; Schleyer, P. V. R.; Mo, Y. *Chem. Eur. J.* **2009**, *15*, 9730–9736. 76

Reviews

Discussions of bonding, reactivity, and reactions of cyclopropanes:
Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. *Chem. Rev.* 1989, *89* (1), 165–198; (b) Walsh, A. D. *Trans. Faraday Soc.* 1949, *45*, 179–190; (c) de Meijere, A. *Angew. Chem. Int. Ed. Engl.* 1979, *18* (11), 809–826; (d) Cavitt, M. A.; Phun, L. H.; France, S. *Chem. Soc. Rev.* 2014, *43* (3), 804–818.

• Cyclopropanations:

(a) cation (bio-inspired): Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J. *Tetrahedron* 2003, *59*, 5623–5634;
(b) from terminal epoxides: M Hodgson, D.; Salik, S. *Curr. Org. Chem.* 2015, *20* (1), 4–18;
(c) stereoselective: Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, *103* (4), 977–1050;
(d) asymmetric ylide: Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. *Chem. Rev.* 1997, *97* (6), 2341–2372.

• Biosynthesis and metabolism:

(a) Wessjohann, L. A.; Brandt, W.; Thiemann, T. *Chem. Rev.* 2003, 103 (4), 1625–1648;
(b) Thibodeaux, C. J.; Chang, W.-C.; Liu, H.-W. *Chem. Rev.* 2012, 112 (3), 1681–1709.

- Books
- Misc: Gong's topic review (database: tr2014_02); Myers' Chem 115; various group meetings on other group's websites; chemistry stack exchange

Original desired structure

- I. Physical considerations of cyclopropanes
- II. Reactivity and basicity of cyclopropanes
- III. Biosynthesis of cyclopropanes and metabolism
 - ii. Enzyme approach
 - iii. Rearrangement approach
- IV. Prevalence of cyclopropanes
 - i. In natural products and in drug discovery
 - ii. In ring opening during total synthesis
- V. Intramolecular cyclopropanations with applications
 - i. 1,3-elimination-like
 - ii. 1,3-coupling-like
 - iii. Carbene or carbenoid additions to π -bonds