Copper in Radical Chemistry

Part 1 : Benzylic Functionnalization

Valentin Soulard Topic Review

08.06.2017

Presentation Layout

- 1 Necessity of Copper
 - 2 Scope of the method

3 – Investigation on the mechanism

4 – Proposed mechanism

5 – Synthetic Application

Introduction

- > Copper chemistry is diverse.
- > Catalyzed reaction involving one or two electron, sometimes both.
- > "Copper-catalyzed synthesis" indicated over 500 papers had been published in 2014
- > Copper is an earth-abundant metal :
- Costless and more sustainable compared to precious transition metal catalyst
- > Low toxicity for a transition metal

S. R. Chemler, Beilstein J Org Chem 2015, 11, 2252–2253.

Contents

- 1 Kharash-Sosnovsky type reaction
 - 1.1 Benzylic oxidation
 - 1.2 Benzylic coupling with 1,3-Dicarbonyl compounds
 - 1.3 Benzylic amination
 - 1.4 Benzylic arylation of activated alkenes
- 2 Co-oxidized with fluorine agent
 - 2.1 Enantioselective cyanation
 - 2.2 Benzylic C-O cyclization
- 3 Co-oxidized with hypervalent iodides
 - 3.1 Direct transformation of Methyl Arenes to Aryl Nitriles
 - 3.2 Benzylic C-O bond formation with NHPI
- 4 Other systems
 - 4.1 Benzylic C-Heteroatomes coupling
 - 4.2 Benzylic C-H Oxygenation under Oxygen Atmosphere
 - 4.3 Benzylic N-Methylation

1 - Karash-Sosnovsky Type Reaction

Karash-Sosnosky Reaction

Proposed Mechanism

M. S. Kharasch, G. Sosnovsky, *J. Am. Chem. Soc.* **1958**, *80*, 756–756. M. Kharasch, A. Fono, *J. Org. Chem.* **1958**, *23*, 324–325.

- 1 Kharash-Sosnovsky type reaction
- 1.2 Benzylic Oxidation

Substrates :

- 1 Kharash-Sosnovsky type reaction
- 1.2 Benzylic Oxidation

1 - Kharash-Sosnovsky type reaction

1.2 - Benzylic Oxidation

Process A

1 - Kharash-Sosnovsky type reaction

1.2 - Benzylic Oxidation

> Mechanism of the Cu^{II}-catalyzed benzylic oxygenation

> Benzylic oxygenation of (aryl)heteroaryl)methanes with oxygen

H. Sterckx, J. De Houwer, C. Mensch, I. Caretti, K. A. Tehrani, W. A. Herrebout, S. Van Doorslaer, B. U. W. Maes, *Chem. Sci.* **2015**, *7*, 346–357.

- 1 Kharash-Sosnovsky type reaction
- 1.2 Benzylic coupling with 1,3-Dicarbonyl compounds
 - > Catalyzed by Copper ?

Entry	Reaction conditions	Yield
1	no catalyst, t-BuOOBz, neat	< 5%
2	Cu(ClO ₄) ₂ , no ligand, tBuOOBz, neat	57%
3	Cu(ClO ₄) ₂ , tBuOOBz, neat	71%

- 1 Kharash-Sosnovsky type reaction
- 1.2 Benzylic coupling with 1,3-Dicarbonyl compounds

> Scope

N. Borduas, D. A. Powell, J. Org. Chem. 2008, 73, 7822–7825.

- 1 Kharash-Sosnovsky type reaction
- 1.2 Benzylic coupling with 1,3-Dicarbonyl compounds
 - > Mechanistic Studies

N. Borduas, D. A. Powell, J. Org. Chem. 2008, 73, 7822–7825.

- 1 Kharash-Sosnovsky type reaction
- 1.2 Benzylic coupling with 1,3-Dicarbonyl compounds
 - > Proposed Mechanism

N. Borduas, D. A. Powell, J. Org. Chem. 2008, 73, 7822-7825.

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination

> The mechanism of the formation of p-toluenesulfonamide (major side product, up to 54%) is unclear.

Y. Kohmura, K.-I. Kawasaki, T. Katsuki, *Synlett* **1997**, *1997*, 1456–1458.

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination
 - > Catalyzed by Copper ?

Entry	Catalyst	Yield
1	none	0%
2	Cu(OTf) ₂	73%

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination

> Scope

G. Pelletier, D. A. Powell, Org. Lett. 2006, 8, 6031-6034.

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination
 - > Mechanistic Studies

G. Pelletier, D. A. Powell, Org. Lett. 2006, 8, 6031–6034.

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination

> Scope

D. A. Powell, H. Fan, J. Org. Chem. 2010, 75, 2726-2729.

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination
 - > Selectivity Experiment

- 1 Kharash-Sosnovsky type reaction
- 1.3 Benzylic Amination
 - > Mechanistic Studies

> Different conclusion than the previous case.

> Proposal

- 1 Kharash-Sosnovsky type reaction
- 1.4 Benzylic arylation of activated alkenes

Entry	Catalyst	Yield
1	/	65%
2	CuCl (5 mol%)	89%
3	Cu ₂ O (5 mol%)	96%
4	Cu ₂ O (2 mol%)	95%

- 1 Kharash-Sosnovsky type reaction
- 1.4 Benzylic arylation of activated alkenes

> Scope

S.-L. Zhou, L.-N. Guo, H. Wang, X.-H. Duan, *Chem. Eur. J.* 2013, 19, 12970–12973.

- 1 Kharash-Sosnovsky type reaction
- 1.4 Benzylic arylation of activated alkenes
 - > Mechanistic Studies

87% yield

S.-L. Zhou, L.-N. Guo, H. Wang, X.-H. Duan, *Chem. Eur. J.* 2013, *19*, 12970–12973.

- 1 Kharash-Sosnovsky type reaction
- 1.4 Benzylic arylation of activated alkenes
 - > Mechanistic Studies

S.-L. Zhou, L.-N. Guo, H. Wang, X.-H. Duan, *Chem. Eur. J.* **2013**, *19*, 12970–12973.

- 1 Kharash-Sosnovsky type reaction
- 1.4 Benzylic arylation of activated alkenes
 - > Proposed Mechanism

S.-L. Zhou, L.-N. Guo, H. Wang, X.-H. Duan, *Chem. Eur. J.* **2013**, *19*, 12970–12973.

- 2 Co-oxidized with fluorine agent
- 2.1 Enantioselective benzylic cyanation

2 - Co-oxidized with fluorine agent

2.1 - Enantioselective benzylic cyanation

- 2 Co-oxidized with fluorine agent
- 2.1 Enantioselective benzylic cyanation
 - > Selectivity Experiments

- 2 Co-oxidized with fluorine agent
- 2.1 Enantioselective benzylic cyanation
 - > Selectivity Experiments

- 2 Co-oxidized with fluorine agent
- 2.1 Enantioselective benzylic cyanation
 - > Radical-Probe Experiments

W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science 2016, 353, 1014–1018.

- 2 Co-oxidized with fluorine agent
- 2.1 Enantioselective benzylic cyanation
 - > Proposed Mechanism

W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science 2016, 353, 1014–1018.

- 2 Co-oxidized with fluorine agent
- 2.1 Enantioselective benzylic cyanation
 - > Synthetic Applications
- > Mild reaction conditions

W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science 2016, 353, 1014–1018.

2 - Co-oxidized with fluorine agent

2.2 - Benzylic C-O cyclization

> Summary

Y. Li, Z. Li, T. Xiong, Q. Zhang, X. Zhang, Org. Lett. 2012, 14, 3522–3525.

- 3 Co-oxidized with hypervalent iodides
- 3.1 Direct transformation of Methyl Arenes to Aryl Nitriles
 - > Catalyzed by Copper ?

Entry	NaN_3	PIDA	Catalyst	time	Yield
1	0	3.2	/	12h	0%
2	4.0	0	/	12h	0%
3	4.0	3.2	/	3h	42%
4	4.0	3.2	CuSO ₄ •5H ₂ O (5 mol%)	6h	70%

W. Zhou, L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7094–7097.

- 3 Co-oxidized with hypervalent iodides
- 3.1 Direct transformation of Methyl Arenes to Aryl Nitriles

> Scope

W. Zhou, L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7094–7097.

- 3 Co-oxidized with hypervalent iodides
- 3.1 Direct transformation of Methyl Arenes to Aryl Nitriles
 - > Mechanistic Studies

W. Zhou, L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7094–7097.

- 3 Co-oxidized with hypervalent iodides
- 3.1 Direct transformation of Methyl Arenes to Aryl Nitriles

> Proposed Mechanism

W. Zhou, L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7094–7097.

- 3 Co-oxidized with hypervalent iodides
- 3.1 Direct transformation of Methyl Arenes to Aryl Nitriles

> Tetrazole analogue related to Disoxaril (drug against picornaviruses)

W. Zhou, L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7094–7097.

- 3 Co-oxidized with hypervalent iodides
- 3.2 Benzylic C-O bond formation with NHPI

> Scope

J. M. Lee, E. J. Park, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130, 7824–7825.

- 3 Co-oxidized with hypervalent iodides
- 3.2 Benzylic C-O bond formation with NHPI
 - > Synthetic utility of the method

J. M. Lee, E. J. Park, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130, 7824–7825.

- 3 Co-oxidized with hypervalent iodides
- 3.2 Benzylic C-O bond formation with NHPI
 - > Mechanistic Studies

Quantum Tunneling effect

J. M. Lee, E. J. Park, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130, 7824–7825.

- 3 Co-oxidized with hypervalent iodides
- 3.2 Benzylic C-O bond formation with NHPI
 - > Mechanistic Studies

J. M. Lee, E. J. Park, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130, 7824–7825.

- 3 Co-oxidized with hypervalent iodides
- 3.2 Benzylic C-O bond formation with NHPI
 - > Proposed mechanism

J. M. Lee, E. J. Park, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2008, 130, 7824–7825.

- 4.1 Benzylic C-Heteroatomes coupling
 - > Scope

H. Hikawa, Y. Mori, S. Kikkawa, I. Azumaya, Adv. Synth. Catal. 2016, 358, 765–773.

4.1 – Benzylic C-Heteroatomes coupling

> Mechanistic Studies

Entry	Radical Scavenger	Yield (NMR)
1		13%
2		56%*
3	galvinoxyl (0.5 equiv.)	27%
4	TEMPO (0.5 equiv.)	trace
5	none	69%

* AuCl₄Na•2 H₂O (5mol%) was used instead of CuBr₂

H. Hikawa, Y. Mori, S. Kikkawa, I. Azumaya, Adv. Synth. Catal. 2016, 358, 765–773.

4.1 – Benzylic C-Heteroatomes coupling

> Mechanistic Studies

> Reaction using HCI as catalyst

H. Hikawa, Y. Mori, S. Kikkawa, I. Azumaya, Adv. Synth. Catal. 2016, 358, 765–773.

- 4.1 Benzylic C-Heteroatomes coupling
 - > Proposed Mechanism

A: Formation of amine radical with Cu^I species

B: Atom-transfer initiated by the Cul

H. Hikawa, Y. Mori, S. Kikkawa, I. Azumaya, Adv. Synth. Catal. 2016, 358, 765–773.

4.2 - Benzylic C-H Oxygenation under Oxygen Atmosphere

> Scope

L. Zhang, G. Y. Ang, S. Chiba, Org. Lett. 2011, 13, 1622–1625.

4.2 - Benzylic C-H Oxygenation under Oxygen Atmosphere

> Proposed Mechanism

L. Zhang, G. Y. Ang, S. Chiba, Org. Lett. 2011, 13, 1622–1625.

4.3 - Benzylic N-C Bond formation and generation of Methane Carbocation

> Proposed mechanism

	Entry	Catalyst	Base	Yield
	1	/	imidazole	20%
	2	Cu(OAc) ₂ •H ₂ O	/	50%
	3	Cu(OAc) ₂ •H ₂ O	imidazole	82%

Y. Bao, Y. Yan, K. Xu, J. Su, Z. Zha, Z. Wang, J. Org. Chem. 2015, 80, 4736–4742.

- 4 Other Systems
- 4.3 Benzylic N-Methylation
 - > Generalities and Scope

Y. Bao, Y. Yan, K. Xu, J. Su, Z. Zha, Z. Wang, J. Org. Chem. 2015, 80, 4736–4742.

- 4 Other Systems
- 4.3 Benzylic N-Methylation
 - > Mechanistic Studies

Y. Bao, Y. Yan, K. Xu, J. Su, Z. Zha, Z. Wang, J. Org. Chem. 2015, 80, 4736–4742.

- 4 Other Systems
- 4.3 Benzylic N-Methylation
 - > EPR Study

Y. Bao, Y. Yan, K. Xu, J. Su, Z. Zha, Z. Wang, *J. Org. Chem.* **2015**, *80*, 4736–4742.

- 4 Other Systems
- 4.3 Benzylic N-Methylation
 - > Proposed mechanism

Y. Bao, Y. Yan, K. Xu, J. Su, Z. Zha, Z. Wang, J. Org. Chem. 2015, 80, 4736–4742.

Conclusion

> Not always mendatory in some reaction

> Versatiles used of copper

> Able to run enantioselective reaction

> Some mechanisms are still unknown

> Co-oxidation possible with oxygen

A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062–11087.

But that is not the only thing about Copper in Radical Chemistry ...

- > Alkenes Functionnalization
- > Arenes Functionnalization
- > Trifluoromethylation reaction
- > ATRA reactions

> Various radical chain processes

... and even more.